ORIENTATION-BASED SEGMENTATION OF TEXTURED IMAGES BY ENERGY MINIMIZATION

Maria Sagrebin-Mitzel, Til Aach

2012

Abstract

We consider textured images, where the textures are composed of different numbers of additively superimposed oriented patterns. Our aim is to develop an energy minimization approach to segment these images into regions according to the number of patterns superimposed. The number of superimposed patterns can be inferred by testing orientation tensors for rank deficiency. In particular, the hypothesis that a local image patch exhibits a given number of superimposed oriented patterns holds if the corresponding orientation tensor is rank deficient by one. The tests can be carried out based on quantities computed from the eigenvalues of the orientation tensors, or equivalently from invariants such as determinant, minors and trace. Direct thresholding of these quantities leads, however, to non-robust segmentation results. We therefore develop energy functions which consist of a data term evaluating tensor rank, and a smoothness term which assesses smoothness of the segmentation results. As the orientation tensors and thus the data term depend on the number of orientations tested for, we derive a hierarchical algorithm for approximate energy minimization using graph cuts. We show the robustness of the approach using both synthetic and real image data.

References

  1. Aach, T., Kaup, A., and Mester, R. (1995). On texture analysis: Local energy transforms versus quadrature filters. Signal Process, 45:173-181.
  2. Aach, T., Mota, C., Stuke, I., Mühlich, M., and Barth, E. (2006). Analysis of superimposed oriented patterns. IEEE Transactions on Image Processing, 15(12):3690-3700.
  3. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal Royal Statistical Society B, 36(2):192-236.
  4. Besag, J. (1986). On the statistical analysis of dirty pictures. Journal Royal Statistical Society B, 48(3):259-302.
  5. Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms (Modern Perspectives in Energy). Springer Verlag.
  6. Bigün, J. and Granlund, G. H. (1987). Optimal orientation detection of linear symmetry. In ICCV87, pages 433 -438.
  7. Bigün, J., Granlund, G. H., and J.Wiklund (1991). Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8):775-790.
  8. Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222 - 1239.
  9. Derin, H. and Cole, W. S. (1986). Segmentation of textured images using Gibbs random fields. Computer Vision, Graphics, and Image Processing, 35:72-98.
  10. Felsberg, M. and Granlund, G. H. (2004). Poi detection using channel clustering and the 2d energy tensor. In DAGM, pages 103-110. Springer Verlag.
  11. Frakes, W. (1992). Information Retrieval Data Structure & Algorithms. Prentice-Hall, Inc.
  12. Freeman, W. and Adelson, E. (1991). The design and use of steerable filters. IEEE Trans. PAMI, 13(9):891-906.
  13. F örstner, W. (1986). A feature based corresponding algorithm for image matching. Intl. Arch. of Photogrammetry and Remote Sensing, 26:150-166.
  14. Granlund, G. H. and Knutsson, H. (1995). Signal Processing for Computer Vision. Dordrecht, The Netherlands:Kluwer.
  15. Haralick, R. M. (1983). Decision making in context. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(4):417-429.
  16. Jacob, M. and Unser, M. (2004). Design of steerable filters for feature detection using Canny-like criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8):1007-1019.
  17. Jain, A. K. and Farrokhnia, F. (1991). Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24(12):1167-1186.
  18. Kass, M. and Witkin, A. (1987). Analyzing oriented patterns. Comput. Vis., Graph., Image Process., 37:362- 385.
  19. Knutsson, H. and Granlund, G. H. (1983). Texture analysis using two-dimensional quadrature filters. In IEEE Workshop on Computer Architecure for Pattern Analysis and Image Data Base Management, Pasadena, CA.
  20. Köthe, U. (2003). Integrated edge and junction detection with the boundary tensor. In ICCV, volume 1, pages 424-431.
  21. Lategahn, H., Groß, S., Stehle, T., and Aach, T. (2010). Texture classification by modeling joint distributions of local patterns with gaussian mixtures. IEEE Transactions on Image Processing, 19(6):1548-1557.
  22. Lazebnik, S., Schmid, C., and Ponce, J. (2005). A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:1265-1278.
  23. Liu, X. and Wang, D. (2003). Texture classification using spectral histograms. IEEE Transactions on Image Processing, 12(6):661-670.
  24. Mühlich, M. and Aach, T. (2009). Analysis of multiple orientations. IEEE Transactions on Image Processing, 18(7):1424-1437.
  25. Mühlich, M., Friedrich, D., and Aach, T. (2012). Design and implementation of multi-steerable matched filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(2):279-291.
  26. Potts, R. (1952). Some generalized order-disorder transformation. Proc. Cambridge Philosophical Soc., 48:106- 109.
  27. Randen, T. and Husoy, J. H. (1999a). Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):291-309.
  28. Randen, T. and Husoy, J. H. (1999b). Texture segmentation using filters with optimized energy separation. IEEE Transactions on Image Processing, 8(4):571-582.
  29. Zenzo, S. D. (1986). A note on the gradient of a multi-image. Comput. Vis., Graph., Image Process., 33:116-125.
Download


Paper Citation


in Harvard Style

Sagrebin-Mitzel M. and Aach T. (2012). ORIENTATION-BASED SEGMENTATION OF TEXTURED IMAGES BY ENERGY MINIMIZATION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 249-258. DOI: 10.5220/0003839602490258


in Bibtex Style

@conference{visapp12,
author={Maria Sagrebin-Mitzel and Til Aach},
title={ORIENTATION-BASED SEGMENTATION OF TEXTURED IMAGES BY ENERGY MINIMIZATION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={249-258},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003839602490258},
isbn={978-989-8565-03-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - ORIENTATION-BASED SEGMENTATION OF TEXTURED IMAGES BY ENERGY MINIMIZATION
SN - 978-989-8565-03-7
AU - Sagrebin-Mitzel M.
AU - Aach T.
PY - 2012
SP - 249
EP - 258
DO - 10.5220/0003839602490258