HIGH RESOLUTION SURVEILLANCE VIDEO COMPRESSION - Using JPEG2000 Compression of Random Variables
Octavian Biris, Joseph L. Mundy
2012
Abstract
This paper proposes a scheme for efficient compression of wide-area aerial video collectors (WAVC) data, based on background modeling and foreground detection using a Gaussian mixture at each pixel. The method implements the novel approach of treating the pixel intensities and wavelet coefficients as random variables. A modified JPEG 2000 algorithm based on the algebra of random variables is then used to perform the compression on the model. This approach leads to a very compact model which is selectively decompressed only in foreground regions. The resulting compression ratio is on the order of 16:1 with minimal loss of detail for moving objects.
References
- Babu, R. V. and Makur, A. (2006). Object-based Surveillance Video Compression using Foreground Motion Compensation. 2006 9th International Conference on Control, Automation, Robotics and Vision, pages 1-6.
- Friedman, N. and Russell, S. (1997). Image segmentation in video sequences : A probabilistic approach 1 Introduction. UAI, pages 175-181.
- Heikkilä, M. and Pietikäinen, M. (2006). A texture-based method for modeling the background and detecting moving objects. IEEE transactions on pattern analysis and machine intelligence, 28(4):657-62.
- Jabri, S., Duric, Z., Wechsler, H., and Rosenfeld, A. (2000). Detection and location of people in video images using adaptive fusion of color and edge information. In ICPR'00, pages 4627-4631.
- Javed, O., Shafique, K., and Shah, M. (2002). A hierarchical approach to robust background subtraction using color and gradient information. In Motion and Video Computing, 2002. Proceedings. Workshop on, pages 22 - 27.
- Lee, D.-S. (2005). Effective gaussian mixture learning for video background subtraction. IEEE transactions on pattern analysis and machine intelligence, 27(5):827- 32.
- Leininger B., Edwards, J. (2008). Autonomous realtime ground ubiquitous surveillance-imaging system (argus-is). In Defense Transformation and NetCentric Systems 2008, volume 6981.
- Perera, A., Collins, R., and Hoogs, A. (2008). Evaluation of compression schemes for wide area video. In Applied Imagery Pattern Recognition Workshop, 2008. AIPR 7808. 37th IEEE, pages 1 -6.
- Schwartz, W. R., Pedrini, H., and Davis, L. S. (2009). Video Compression and Retrieval of Moving Object Location Applied to Surveillance. In Proceedings of the 6th International Conference on Image Analysis (ICIAR), pages 906-916.
- Stauffer, C. and Grimson, W. (1999). Adaptive background mixture models for real-time tracking. Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), pages 246-252.
- Taubman, D. and Marcellin, M. (2004). JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers,Third Printing 2004 ISBN: 9780792375197.
- Wackerly, D., Mendenhall, W., and Scheaffer, R. (2002). Mathematical statistics with applications. Duxbury -Thomson Learning, ISBN: 0534377416 9780534377410.
- Weisstein, E. W. (2012). ”normal sum distribution. http://mathworld.wolfram.com/NormalSumDistributi on.html.
- Zhang, Z. (2003). EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognition, 36(9):1973-1983.
- Zivkovic, Z. (2004). Improved adaptive Gaussian mixture model for background subtraction. Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., pages 28-31 Vol.2.
Paper Citation
in Harvard Style
Biris O. and L. Mundy J. (2012). HIGH RESOLUTION SURVEILLANCE VIDEO COMPRESSION - Using JPEG2000 Compression of Random Variables . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 38-45. DOI: 10.5220/0003840800380045
in Bibtex Style
@conference{visapp12,
author={Octavian Biris and Joseph L. Mundy},
title={HIGH RESOLUTION SURVEILLANCE VIDEO COMPRESSION - Using JPEG2000 Compression of Random Variables},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={38-45},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003840800380045},
isbn={978-989-8565-03-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - HIGH RESOLUTION SURVEILLANCE VIDEO COMPRESSION - Using JPEG2000 Compression of Random Variables
SN - 978-989-8565-03-7
AU - Biris O.
AU - L. Mundy J.
PY - 2012
SP - 38
EP - 45
DO - 10.5220/0003840800380045