HIGH RESOLUTION SURVEILLANCE VIDEO COMPRESSION - Using JPEG2000 Compression of Random Variables

Octavian Biris, Joseph L. Mundy

2012

Abstract

This paper proposes a scheme for efficient compression of wide-area aerial video collectors (WAVC) data, based on background modeling and foreground detection using a Gaussian mixture at each pixel. The method implements the novel approach of treating the pixel intensities and wavelet coefficients as random variables. A modified JPEG 2000 algorithm based on the algebra of random variables is then used to perform the compression on the model. This approach leads to a very compact model which is selectively decompressed only in foreground regions. The resulting compression ratio is on the order of 16:1 with minimal loss of detail for moving objects.

References

  1. Babu, R. V. and Makur, A. (2006). Object-based Surveillance Video Compression using Foreground Motion Compensation. 2006 9th International Conference on Control, Automation, Robotics and Vision, pages 1-6.
  2. Friedman, N. and Russell, S. (1997). Image segmentation in video sequences : A probabilistic approach 1 Introduction. UAI, pages 175-181.
  3. Heikkilä, M. and Pietikäinen, M. (2006). A texture-based method for modeling the background and detecting moving objects. IEEE transactions on pattern analysis and machine intelligence, 28(4):657-62.
  4. Jabri, S., Duric, Z., Wechsler, H., and Rosenfeld, A. (2000). Detection and location of people in video images using adaptive fusion of color and edge information. In ICPR'00, pages 4627-4631.
  5. Javed, O., Shafique, K., and Shah, M. (2002). A hierarchical approach to robust background subtraction using color and gradient information. In Motion and Video Computing, 2002. Proceedings. Workshop on, pages 22 - 27.
  6. Lee, D.-S. (2005). Effective gaussian mixture learning for video background subtraction. IEEE transactions on pattern analysis and machine intelligence, 27(5):827- 32.
  7. Leininger B., Edwards, J. (2008). Autonomous realtime ground ubiquitous surveillance-imaging system (argus-is). In Defense Transformation and NetCentric Systems 2008, volume 6981.
  8. Perera, A., Collins, R., and Hoogs, A. (2008). Evaluation of compression schemes for wide area video. In Applied Imagery Pattern Recognition Workshop, 2008. AIPR 7808. 37th IEEE, pages 1 -6.
  9. Schwartz, W. R., Pedrini, H., and Davis, L. S. (2009). Video Compression and Retrieval of Moving Object Location Applied to Surveillance. In Proceedings of the 6th International Conference on Image Analysis (ICIAR), pages 906-916.
  10. Stauffer, C. and Grimson, W. (1999). Adaptive background mixture models for real-time tracking. Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), pages 246-252.
  11. Taubman, D. and Marcellin, M. (2004). JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers,Third Printing 2004 ISBN: 9780792375197.
  12. Wackerly, D., Mendenhall, W., and Scheaffer, R. (2002). Mathematical statistics with applications. Duxbury -Thomson Learning, ISBN: 0534377416 9780534377410.
  13. Weisstein, E. W. (2012). ”normal sum distribution. http://mathworld.wolfram.com/NormalSumDistributi on.html.
  14. Zhang, Z. (2003). EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognition, 36(9):1973-1983.
  15. Zivkovic, Z. (2004). Improved adaptive Gaussian mixture model for background subtraction. Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., pages 28-31 Vol.2.
Download


Paper Citation


in Harvard Style

Biris O. and L. Mundy J. (2012). HIGH RESOLUTION SURVEILLANCE VIDEO COMPRESSION - Using JPEG2000 Compression of Random Variables . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 38-45. DOI: 10.5220/0003840800380045


in Bibtex Style

@conference{visapp12,
author={Octavian Biris and Joseph L. Mundy},
title={HIGH RESOLUTION SURVEILLANCE VIDEO COMPRESSION - Using JPEG2000 Compression of Random Variables},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={38-45},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003840800380045},
isbn={978-989-8565-03-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - HIGH RESOLUTION SURVEILLANCE VIDEO COMPRESSION - Using JPEG2000 Compression of Random Variables
SN - 978-989-8565-03-7
AU - Biris O.
AU - L. Mundy J.
PY - 2012
SP - 38
EP - 45
DO - 10.5220/0003840800380045