HUMAN AGE ESTIMATION VIA GEOMETRIC AND TEXTURAL FEATURES

Merve Kilinc, Yusuf Sinan Akgul

2012

Abstract

Aging progress of a person is influenced by many factors such as genetics, health, lifestyle, and even weather conditions. Therefore human age estimation from a face image is a challenging problem. Aging causes significant variations in facial shape and texture across years. In order to construct a general age classifier, shape and texture information of human face should be used together. In this paper, we propose a new age estimation system that uses a number of overlapping age groups and a classifier that combine geometric and textural facial features. The classifier scoring results are interpolated to produce the estimated age. We tested many geometric and textural facial features with age group classifiers. Comparative experiments show that the best performance is obtained using the fusion of Local Gabor Binary Patterns and Geometric features.

References

  1. Ahonen, T., Hadid, A., and Pietikainen, M. (2004). Face Recognition with Local Binary Patterns. In Computer Vision - ECCV 2004, pages 469-481.
  2. Bhuiyan, A. and Liu, C. H. (2007). On face recognition using gabor filters.
  3. Burt, D. M. and Perrett, D. I. (1995). Perception of age in adult caucasian male faces: Computer graphic manipulation of shape and colour information. Proceedings of the Royal Society of London. Series B: Biological Sciences, 259(1355):137-143.
  4. DeCarlo, D., Metaxas, D., and Stone, M. (1998). An anthropometric face model using variational techniques. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, SIGGRAPH 7898, pages 67-74, New York, NY, USA. ACM.
  5. Ekenel, H., Fischer, M., Tekeli, E., Stiefelhagen, R., and Ercil, A. (2008). Local binary pattern domain local appearance face recognition. In Signal Processing, Communication and Applications Conference, 2008. SIU 2008. IEEE 16th, pages 1-4.
  6. FGNET (2010). The FG-NET Aging Database [Online]. Available: http://www.fgnet.rsunit.com/, 2010. http://www.fgnet.rsunit.com.
  7. Freund, Y. and Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. In In Proceedings of the Thirteenth International Conference on Machine Learning, pages 148-156.
  8. Fu, Y., Guo, G., and Huang, T. (2010). Age synthesis and estimation via faces: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32.
  9. Gao, F. and Ai, H. (2009). Face age classification on consumer images with gabor feature and fuzzy lda method. In Proceedings of the Third International Conference on Advances in Biometrics, ICB 7809, pages 132-141, Berlin, Heidelberg. Springer-Verlag.
  10. Geng, X., hua Zhou, Z., and Smith-Miles, K. (2007). Automatic age estimation based on facial aging patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:2234-2240.
  11. Guo, G., Fu, Y., Dyer, C., and Huang, T. (2008). Imagebased human age estimation by manifold learning and locally adjusted robust regression. Image Processing, IEEE Transactions on, 17(7):1178-1188.
  12. Guo, G., Mu, G., Fu, Y., and Huang, T. (2009). Human age estimation using bio-inspired features. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 112-119.
  13. Kwon, Y. H. and Lobo, N. D. V. (1999). Age classification from facial images. In In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 762-767.
  14. Lanitis, A., Draganova, C., and Christodoulou, C. (2004). Comparing different classifiers for automatic age estimation. IEEE Trans Syst Man Cybern B Cybern, 34(1):621-8.
  15. Marcel, S., Rodriguez, Y., and Heusch, G. (2007). On the recent use of local binary patterns for face authentication. International Journal on Image and Video Processing Special Issue on Facial Image Processing. IDIAP-RR 06-34, accepted for publication but withdrawn because of author charges.
  16. Ramanathan, N. and Chellappa, R. (2006). Modeling age progression in young faces. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 387-394.
  17. Ramanathan, N. and Chellappa, R. (2008). Modeling shape and textural variations in aging faces. In Automatic Face Gesture Recognition, 2008. FG 7808. 8th IEEE International Conference on, pages 1-8.
  18. Ricanek Jr., K. and Tesafaye, T. (2006). Morph: A longitudinal image database of normal adult age-progression. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, FGR 7806, pages 341-345, Washington, DC, USA. IEEE Computer Society.
  19. Shan, S., Gao, W., Chang, Y., Cao, B., and Yang, P. (2004). Review the Strength of Gabor Features for Face Recognition from the Angle of Its Robustness to Mis-Alignment. Pattern Recognition, International Conference on, 1:338-341.
  20. Yan, S., Zhou, X., Liu, M., Hasegawa-Johnson, M., and Huang, T. (2008). Regression from patch-kernel. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8.
  21. Yang, Z. G. and Ai, H. Z. (2007). Demographic Classification with Local Binary Patterns. Biometric Authentication, pages 464-473.
  22. Zhang, W., Shan, S., Gao, W., Chen, X., and Zhang, H. (2005). Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, volume 1, pages 786-791 Vol. 1.
Download


Paper Citation


in Harvard Style

Kilinc M. and Sinan Akgul Y. (2012). HUMAN AGE ESTIMATION VIA GEOMETRIC AND TEXTURAL FEATURES . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 531-538. DOI: 10.5220/0003849005310538


in Bibtex Style

@conference{visapp12,
author={Merve Kilinc and Yusuf Sinan Akgul},
title={HUMAN AGE ESTIMATION VIA GEOMETRIC AND TEXTURAL FEATURES},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={531-538},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003849005310538},
isbn={978-989-8565-03-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - HUMAN AGE ESTIMATION VIA GEOMETRIC AND TEXTURAL FEATURES
SN - 978-989-8565-03-7
AU - Kilinc M.
AU - Sinan Akgul Y.
PY - 2012
SP - 531
EP - 538
DO - 10.5220/0003849005310538