A NEW MULTIPLE CLASSIFIER SYSTEM FOR SEMI-SUPERVISED ANALYSIS OF HYPERSPECTRAL IMAGES

Jun Li, Prashanth Reddy Marpu, Antonio Plaza, Jose Manuel Bioucas Dias, Jon Atli Benediktsson

2012

Abstract

In this work, we propose a new semi-supervised algorithm for remotely sensed hyperspectral image classification which belongs to the family of multiple classifier systems. The proposed approach combines the output of two well-established discriminative classifiers: sparse multinomial logistic regression (SMLR) and quadratic discriminant analysis (QDA). Our approach follows a two-step strategy. First, both SMLR and QDA are trained from the same set of labeled training samples and make predictions for the unlabeled samples in the image. Second, the set of unlabeled training samples is expanded by combining the estimates obtained by both classifiers in the previous step. The effectiveness of the proposed method is evaluated via experiments with a widely used hyperspectral image, collected by the Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Indian Pines region in Indiana. Our results indicate that the proposed multiple classifier method provides state-of-the-art performance when compared to other methods.

References

  1. Bioucas-Dias, J. and Figueiredo, M. (2009). Logistic regression via variable splitting and augmented lagrangian tools. Technical report, Instituto Superior Tecnico, TULisbon.
  2. Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 1st edition.
  3. Böhning, D. (1992). Multinomial logistic regression algorithm. Annals of the Institute of Statistical Mathematics, 44:197-200.
  4. Camps-Valls, G., Bandos, T., and Zhou, D. (2007). Semisupervised graph-based hyperspectral image classification. IEEE T. Geoscience and Remote Sensing, 45(10):3044-3054.
  5. Camps-Valls, G. and Bruzzone, L. (2005). Kernel-based methods for hyperspectral image classification. IEEE T. Geoscience and Remote Sensing, 43(6):1351-1362.
  6. Camps-Valls, G., Gomez-Chova, L., Muoz-Mar, J., VilaFrancs, J., and Calpe-Maravilla, J. (2006). Composite kernels for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters.
  7. Chapelle, O., Chi, M., and Zien, A. (2006). A continuation method for semi-supervised svms. In Proceedings of the 23rd International Conference on Machine Learning, pages 185-192. ACM Press.
  8. Dias, J. and Nascimento, J. M. P. (2008). Hyperspectral subspace identification. IEEE Trans. on Geoscience and Remote Sensing, 46(8):2435-2445.
  9. Duda, R. O., Hart, P. E., and Stork, D. G. (200). Pattern Classification. Wiley-Interscience, 2nd edition.
  10. Fauvel, M., Benediktsson, J. A., Chanussot, J., and Sveinsson, J. R. (2008). Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 46(11):3804-3814.
  11. Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M., Chippendale, B. J., Faust, J. A., Pavri, B. E., Chovit, C. J., Solis, M., and et al (1998). Imaging spectroscopy and the airborne visible/ infrared imaging spectrometer (aviris). Remote Sensing of Environment, 65(3):227-248.
  12. Kittler, J. and Roli, F. (2000). Multiple classifier systems. In In Proc. of the First Int. Workshop MCS 2000. Lecture Notes in Computer Science, volume 1857.
  13. Krishnapuram, B., Carin, L., Figueiredo, M., and Hartemink, A. (2005). Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):957968.
  14. Krishnapuram, B., Williams, D., Xue, Y., Hartemink, A., Carin, L., and Figueiredo, M. (2004). On semisupervised classification. In Proc. 18th Annual Conference on Neural Information Processing Systems, Vancouver, Canada.
  15. Landgrebe, D. A. (2003). Signal Theory Methods in Multispectral Remote Sensing. John Wiley, Hoboken, NJ.
  16. Li, J., Bioucas-Dias, J., and Plaza, A. (2009). Semisupervised hyperspectral image classification based on a markov random field and sparse multinomial logistic regression. In Proc. IEEE International Geoscience and Remote sensing Symposium.
  17. Li, J., Bioucas-Dias, J., and Plaza, A. (2010a). Exploiting spatial information in semi-supervised hyperspectral image segmentation. In IEEE GRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS10).
  18. Li, J., Bioucas-Dias, J., and Plaza, A. (2010b). Hyperspectral image segmentation using a new bayesian approach with active learning. In IEEE Transactions on Geoscience and Remote Sensing (submitted).
  19. Li, J., Bioucas-Dias, J., and Plaza, A. (2010c). Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. In IEEE Transactions on Geoscience and Remote Sensing, volume 48, page 40854098.
  20. Mackay, D. (1992). Information-based objective functions for active data selection. Neural Computation, 4:590- 604.
  21. Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J. C., and Trianni, G. (2009). Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 113(110-122).
  22. Roli, F. (2005). Semi-supervised multiple classifier systems: Background and research directions. Multiple Classifier Systems, pages 1-11.
  23. Tuia, D. and Camps-Valls, G. (2009). Semi-supervised hyperspectral image classification with cluster kernels. IEEE Geoscience and Remote Sensing Letters.
  24. Velasco-Forero, S. and Manian, V. (2009). Improving hyperspectral image classification using spatial preprocessing. IEEE Geoscience and Remote Sensing Letters, 6:297-301.
  25. Xu, L., Krzyzak, A., , and Suen, C. Y. (1992). Methods for combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. on Systems, Man and cyb., 22:418435.
  26. Zhu, X. (2005). Semi-supervised learning literature survey. technical report 1530, computer sciences. Technical report, University of Wisconsin-Madison.
Download


Paper Citation


in Harvard Style

Li J., Reddy Marpu P., Plaza A., Manuel Bioucas Dias J. and Atli Benediktsson J. (2012). A NEW MULTIPLE CLASSIFIER SYSTEM FOR SEMI-SUPERVISED ANALYSIS OF HYPERSPECTRAL IMAGES . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: PRARSHIA, (ICPRAM 2012) ISBN 978-989-8425-98-0, pages 406-411. DOI: 10.5220/0003849504060411


in Bibtex Style

@conference{prarshia12,
author={Jun Li and Prashanth Reddy Marpu and Antonio Plaza and Jose Manuel Bioucas Dias and Jon Atli Benediktsson},
title={A NEW MULTIPLE CLASSIFIER SYSTEM FOR SEMI-SUPERVISED ANALYSIS OF HYPERSPECTRAL IMAGES},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: PRARSHIA, (ICPRAM 2012)},
year={2012},
pages={406-411},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003849504060411},
isbn={978-989-8425-98-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: PRARSHIA, (ICPRAM 2012)
TI - A NEW MULTIPLE CLASSIFIER SYSTEM FOR SEMI-SUPERVISED ANALYSIS OF HYPERSPECTRAL IMAGES
SN - 978-989-8425-98-0
AU - Li J.
AU - Reddy Marpu P.
AU - Plaza A.
AU - Manuel Bioucas Dias J.
AU - Atli Benediktsson J.
PY - 2012
SP - 406
EP - 411
DO - 10.5220/0003849504060411