UNITY IN DIVERSITY: DISCOVERING TOPICS FROM WORDS - Information Theoretic Co-clustering for Visual Categorization
Ashish Gupta, Richard Bowden
2012
Abstract
This paper presents a novel approach to learning a codebook for visual categorization, that resolves the key issue of intra-category appearance variation found in complex real world datasets. The codebook of visual-topics (semantically equivalent descriptors) is made by grouping visual-words (syntactically equivalent descriptors) that are scattered in feature space. We analyze the joint distribution of images and visual-words using information theoretic co-clustering to discover visual-topics. Our approach is compared with the standard ‘Bagof-Words’ approach. The statistically significant performance improvement in all the datasets utilized (Pascal VOC 2006; VOC 2007; VOC 2010; Scene-15) establishes the efficacy of our approach.
References
- Boiman, O., Shechtman, E., and Irani, M. (2008). In defense of nearest-neighbor based image classification. In CVPR08, pages 1-8.
- Table 4: Expt. Topic Codebook Size: Comparison of information theoretic co-clustering in terms of performance gain over the BoW model. The dataset utilized is Pacal VOC2010. The graphs show the F1-score for each technique across the visual categories in the dataset. The codebook sizes are 50, 100, 500, 1000, and 5000.
- Cheng, Y. and Church, G. M. (2000). Biclustering of expression data. In Proc Int Conf Intell Syst Mol Biol., volume 8, pages 93-103.
- Csurka, G., Dance, C. R., Fan, L., Willamowski, J., and Bray, C. (2004). Visual categorization with bags of keypoints. In In Workshop on Statistical Learning in Computer Vision, ECCV, pages 1-22.
- Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 7801, pages 269-274, New York, NY, USA. ACM.
- Dhillon, I. S., Mallela, S., and Modha, D. S. (2003). Information-theoretic co-clustering. In In KDD, pages 89-98. ACM Press.
- Everingham, M. (2006). The PASCAL Visual Object Classes Challenge 2006 (VOC2006) Results. http:// www.pascal-network.org/ challenges/ VOC/ voc2006/ results.pdf.
- Everingham, M. (2007). The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http:// www.pascal-network.org/ challenges/ VOC/ voc2007/ workshop/index.html.
- Everingham, M. (2010). The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results. http:// www.pascal-network.org/ challenges/ VOC/ voc2010/ workshop/index.html.
- Fei-fei, L. (2005). A bayesian hierarchical model for learning natural scene categories. In In Proc. CVPR, pages 524-531.
- Gupta, A. and Bowden, R. (2011). Evaluating dimensionality reduction techniques for visual category recognition using renyi entropy. In In Proc. of European Signal Processing Conf., pages 913-917.
- Hartigan, J. A. (1972). Direct clustering of a data matrix. Journal of the American Statistical Association, 67(337):pp. 123-129.
- Horster, E., Greif, T., Lienhart, R., and Slaney, M. (2008). Comparing local feature descriptors in plsa-based image models. In Proc. of the 30th DAGM symposium, pages 446-455, Berlin, Heidelberg.
- Ke, Y. and Sukthankar, R. (2004). Pca-sift: a more distinctive representation for local image descriptors. In CVPR04, pages II: 506-513.
- Liu, J. and Shah, M. (2007). Scene modeling using coclustering. In In Proc. ICCV, pages 1-7.
- Lowe, D. (2004). Distinctive image features from scaleinvariant keypoints. International Journal on Computer Vision, 60(2):91-110.
- Rycroft, C. H., Grest, G. S., Landry, J. W., and Bazant, M. Z. (2006). Analysis of granular flow in a pebblebed nuclear reactor. Physical Review E, 74.
Paper Citation
in Harvard Style
Gupta A. and Bowden R. (2012). UNITY IN DIVERSITY: DISCOVERING TOPICS FROM WORDS - Information Theoretic Co-clustering for Visual Categorization . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 628-633. DOI: 10.5220/0003861206280633
in Bibtex Style
@conference{visapp12,
author={Ashish Gupta and Richard Bowden},
title={UNITY IN DIVERSITY: DISCOVERING TOPICS FROM WORDS - Information Theoretic Co-clustering for Visual Categorization},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={628-633},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003861206280633},
isbn={978-989-8565-03-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - UNITY IN DIVERSITY: DISCOVERING TOPICS FROM WORDS - Information Theoretic Co-clustering for Visual Categorization
SN - 978-989-8565-03-7
AU - Gupta A.
AU - Bowden R.
PY - 2012
SP - 628
EP - 633
DO - 10.5220/0003861206280633