3D HUMAN BODY POSE ESTIMATION BY SUPERQUADRICS
Ilya Afanasyev, Massimo Lunardelli, Nicolò Biasi, Luca Baglivo, Mattia Tavernini, Francesco Setti, Mariolino De Cecco
2012
Abstract
This paper presents a method for 3D Human Body pose estimation. 3D real data of the searched object is acquired by a multi-camera system and segmented by a special preprocessing algorithm based on clothing analysis. The human body model is built by nine SuperQuadrics (SQ) with a-priori known anthropometric scaling and shape parameters. The pose is estimated hierarchically by RANSAC-object search with a least square fitting 3D point cloud to SQ models: at first the body, and then the limbs. The solution is verified by evaluating the matching score, i.e. the number of inliers corresponding to a-piori chosen distance threshold, and comparing this score with admissible inlier threshold for the body and limbs. This method can be used for 3D object recognition, localization and pose estimation of Human Body.
References
- Balan A., Sigal L., Black M., Davis J., and Haussecker H., 2007. Detailed Human Shape and Pose from Images. In IEEE Conf. Proc. CVPR 7807. DOI: 10.1109/CVPR.2007.383340.
- De Cecco M., Pertile M., Baglivo L., Lunardelli M., Setti F., and Tavernini M., 2010. A unified framework for uncertainty, compatibility analysis, and data fusion for multi-stereo 3-D shape estimation. In IEEE Transactions on Instrumentation and measurement, Vol. 59, No. 11.
- De Cecco M., Paludet A., Setti F., Lunardelli M., Bini R., Tavernini M., Baglivo L., Kirchner M., Da Lio M., 2010. VERITAS poster at SIAMOC congress, Italy. http://veritas-project.eu/2010/10/veritas-presented-atsiamoc-congress/
- Forsyth D., Arikan O., Ikemoto L., O'Brien J. and Ramanan D., 2005. Computational studies of human motion.Foundation & Trends in Computer Graphics & Vision, V.1 No.2,3: 77-254.
- Ivekovic S. and Trucco E., 2006. Human Body Pose Estimation with PSO. IEEE Congress on Evolutionary Computation CEC-2006, Canada. P.: 4399-4406.
- Jaklic A., Leonardis A., Solina F., 2000. Segmentation and Recovery of Superquadrics. Computational imaging and vision 20, Kluwer, Dordrecht.
- Hofmann M., Gavrila D.M., 2009. Multi-view 3D Human Pose Estimation combining Single-frame Recovery, Temporal Integration and Model Adaptation. In CVPR: 2214-2221.
- Kovesi P., 2008. RANSAC software in MATLAB. www.csse.uwa.edu.au/pk/research/matlabfns/.
- Leonardis A., Jaklic A., Solina F., 1997. Superquadrics for Segmenting and Modeling Range Data. In IEEE Conf. Proc.. PAMI-19 (11). P. 1289-1295. DOI: 10.1109/34.632988.
- Moeslund T., Hilton A. and Kruger V., 2006 A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 104: 90-126.
- Mun Wai Lee, Cohen I., 2004. Human Upper Body Pose Estimation in Static Images. In ECCV (2): 126-138.
- Shotton J., Fitzgibbon A., Cook M., Sharp T., Finocchio M., Moore R., Kipman A., and Blake A. Real-Time Human Pose Recognition in Parts from a Single Depth Image. CVPR, IEEE, June 2011.
- Sminchisescu C. and Triggs B., 2003. Estimating articulated human motion with covariance scaled sampling. Int. J. Robotics Research, 22(6): 371-393.
- Solina F. and Bajcsy R., 1990. Recovery of parametric models from range images: The case for superquadrics with global deformations. IEEE Transactions PAMI12(2):131-147.
Paper Citation
in Harvard Style
Afanasyev I., Lunardelli M., Biasi N., Baglivo L., Tavernini M., Setti F. and De Cecco M. (2012). 3D HUMAN BODY POSE ESTIMATION BY SUPERQUADRICS . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-04-4, pages 294-302. DOI: 10.5220/0003862202940302
in Bibtex Style
@conference{visapp12,
author={Ilya Afanasyev and Massimo Lunardelli and Nicolò Biasi and Luca Baglivo and Mattia Tavernini and Francesco Setti and Mariolino De Cecco},
title={3D HUMAN BODY POSE ESTIMATION BY SUPERQUADRICS},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={294-302},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003862202940302},
isbn={978-989-8565-04-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)
TI - 3D HUMAN BODY POSE ESTIMATION BY SUPERQUADRICS
SN - 978-989-8565-04-4
AU - Afanasyev I.
AU - Lunardelli M.
AU - Biasi N.
AU - Baglivo L.
AU - Tavernini M.
AU - Setti F.
AU - De Cecco M.
PY - 2012
SP - 294
EP - 302
DO - 10.5220/0003862202940302