STATISTICAL ASYMMETRY-BASED BRAIN TUMOR SEGMENTATION FROM 3D MR IMAGES

Chen-Ping Yu, Guilherme C. S. Ruppert, Dan T. D. Nguyen, Alexandre X. Falcão, Yanxi Liu

2012

Abstract

The precise segmentation of brain tumors from MR images is necessary for surgical planning. However, it is a tedious task for the medical professionals to process manually. The performance of supervised machine learning techniques for automatic tumor segmentation is time consuming and very dependent on the type of the training samples. Brain tumors are statistically asymmetrical blobs with respect to the mid-sagittal plane (MSP) in the brain and we present an asymmetry-based, novel, fast, fully-automatic and unsupervised framework for 3D brain tumor segmentation from MR images. Our approach detects asymmetrical intensity deviation of brain tissues in 4 stages: (1) automatic MSP extraction, (2) asymmetrical slice extraction for an estimated tumor location, (3) region of interest localization, and (4) 3D tumor volume delineation using a watershed method. The method has been validated on 17 clinical MR volumes with a 71.23%+-27.68% mean Jaccard Coefficient.

References

  1. Audigier, R., Lotufo, R. A. (2007). Watershed by Image Foresting Transform, Tie-Zone, and Theoretical Relationships with Other Watershed Definitions. In: Proceedings of the 8th International Symposium on Mathematical Morphology
  2. Alsabti, K., Ranka, S., Singh, V. (1998). An efficient k-
  3. Corso, J. J., Sharon, E., Yuille, A. (2006). Multilevel Segmentation and Integrated Bayesian Model Classification with an Application to Brain Tumor Segmentation. MICCAI
  4. Bergo, F. P., Falcao, A., Yasuda, C., Ruppert, G. (2008). Fast and Robust Mid-Sagittal Plane Location in 3D Mr Images of the Brain: Biomedical Engineering Systems and Technologies, vol. 25, pp. 278-290
  5. Gering, D. T. (2003). Diagonalized nearest neighbor pattern matching for brain tumor segmentation. MICCAI
  6. Grau, V., Mewes, A. U. J., Alcaniz, M., Kiminis, R., Warfield, S. K. (2004). Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging, vol. 23, iss. 4
  7. Iftekharuddin, K. M., Zheng, J., Islam, M. A., Ogg, R. J. (2008). Fractal-based brain tumor detection in multimodal MRI. AMC
  8. Joshi, S., Lorenzen, P., Gerig, G., Bullitt, E. (2003). Structural and radiometric asymmetry in brain images. Medical Image Analysis, 7(2): 155-170
  9. Klein, A., Andersson, J., Ardekani B. A., Ashburner J., Avants B., Chiang M. C., Christensen G. E., Collins D. L., Gee J., Hellier P., Song J. H., Jenkinson M., Lepage C., Rueckert D., Thompson P., Vercauteren T., Woods R. P., Mann J. J., Parsey R. V. (2009). Evaluation of 14 non-linear deformation algorithm applied to human brain MRI registration. Neuroimage
  10. Kumar, S., Hebert, M. (2003) Discriminative fields for modeling spatial dependencies in natural images. NIPS
  11. Lafferty, J., Pereira, F., McCallum, A. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML
  12. Lee, C.H., Greiner, R., Schmidt, M. (2005). Support vector random fields for spatial classification. In: PKDD, pp. 121-132
  13. Lee, C. H., Wang, S., Murtha, A., Brown, M. R. G., Greiner, R. (2008). Segmenting Brain Tumors using PseudoConditional Random Fields. MICCAI
  14. Li, S. Z. (2001). Markov Random Field Modeling in Image Analysis. Springer-Verlag, Tokyo
  15. Mancas, M., Gosselin, B., and Macq,B. (2005). Fast and automatic tumoral area localization using symmetry. IEEE International Conference on Acoustics, Speech and Signal Processing, 2: 725-728
  16. Ling, H., Okada, K. (2007). An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison. PAMI
  17. Lotufo, R., Falcao, A. (2000). The ordered queue and the optimality of the watershed approaches, In: Math-
  18. and Signal Processing, vol. 18, pp. 341-350
  19. Ray, N., Saha, B., and Brown, M.(2007). Locating Brain Tumors from MR Imagery Using Symmetry. ACSSC
  20. Najnam, L., Couprie, M. (2003). Watershed algorithms and contrast preservation. In: Lecture notes in computer science, vol 2886, pp. 62V71.
  21. Prastawa, M., Bullitt, E., Gerig, G. (2004). A Brain Tumor Segmentation Framework Based on Outlier Detection. Medical Image Analysis, vol 150.
  22. Ray, N., Saha, B., Brown, M. (2007). Locating Brain Tumors from MR Imagery Using Symmetry. ACSSC.
  23. Schmidt, M., Levner, I., Greiner, R., Murtha, A., Bistritz, A. (2005). Segmenting brain tumors using alignmentbased features. MLA
  24. Ruppert, G. C. S., Teverovskiy, L., Yu, C., Falcao, A. X., Liu, Y. (2011). A New Symmetry-based Method for Mid-sagittal Plane Extraction in Neuroimages. International Symposium on Biomedical Imaging: From Macro to Nano
  25. Volkau, I., Prakash, K. N. B. , Ananthasubramaniam, A., Aziz, A. and Nowinski, W. L. (2006). Extraction of the midsagittal plane from morphological neuroimages using the Kullback-Leibler's measure. In: Medical Image Analysis, 10(6): 863-874
  26. Zhang, J., Ma, K., Er, M., Chong, V. (2004). Tumor Segmentation from Magnetic Resonance Imaging by Learning via One-Class Support Vector Machine. IWAIT
  27. Koshy, D., Yu, C., Nguyen, D., Kashyap, S., Collins, R., Liu, Y. (2011). Supervised Machine Learning for Brain Tumor Detection in Structural MRI. In: Radiological Society of North America, RSNA
Download


Paper Citation


in Harvard Style

Yu C., C. S. Ruppert G., T. D. Nguyen D., X. Falcão A. and Liu Y. (2012). STATISTICAL ASYMMETRY-BASED BRAIN TUMOR SEGMENTATION FROM 3D MR IMAGES . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MIAD, (BIOSTEC 2012) ISBN 978-989-8425-89-8, pages 527-533. DOI: 10.5220/0003892205270533


in Bibtex Style

@conference{miad12,
author={Chen-Ping Yu and Guilherme C. S. Ruppert and Dan T. D. Nguyen and Alexandre X. Falcão and Yanxi Liu},
title={STATISTICAL ASYMMETRY-BASED BRAIN TUMOR SEGMENTATION FROM 3D MR IMAGES},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MIAD, (BIOSTEC 2012)},
year={2012},
pages={527-533},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003892205270533},
isbn={978-989-8425-89-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MIAD, (BIOSTEC 2012)
TI - STATISTICAL ASYMMETRY-BASED BRAIN TUMOR SEGMENTATION FROM 3D MR IMAGES
SN - 978-989-8425-89-8
AU - Yu C.
AU - C. S. Ruppert G.
AU - T. D. Nguyen D.
AU - X. Falcão A.
AU - Liu Y.
PY - 2012
SP - 527
EP - 533
DO - 10.5220/0003892205270533