INFERRING WEB PAGE RELEVANCE FROM HUMAN-COMPUTER INTERACTION LOGGING

Vincenzo Deufemia, Massimiliano Giordano, Giuseppe Polese, Genoveffa Tortora

2012

Abstract

Quality of search engine results often do not meet user’s expectations. In this paper we propose to implicitly infer visitors feedbacks from the actions they perform while reading a web document. In particular, we propose a new model to interpret mouse cursor actions, such as scrolling, movement, text selection, while reading web documents, aiming to infer a relevance value indicating how the user found the document useful for his/her search purposes. We have implemented the proposed model through light-weight components, which can be easily installed within major web browsers as a plug-in. The components capture mouse cursor actions without spoiling user browsing activities, which enabled us to easily collect experimental data to validate the proposed model. The experimental results demonstrate that the proposed model is able to predict user feedbacks with an acceptable level of accuracy.

References

  1. Agichtein, E., Brill, E., Dumais, S., and Ragno, R. (2006). Learning user interaction models for predicting web search result preferences. In Proceedings of the 29th International ACM Conference on Research and Development in Information Retrieval, SIGIR'06, pages 3-10, New York, NY, USA. ACM.
  2. Agichtein, E. and Zheng, Z. (2006). Identifying ”best bet” web search results by mining past user behavior. In Proceedings of the 12th ACM Conference on Knowledge Discovery and Data Mining, KDD'06, pages 902-908, New York, NY, USA. ACM.
  3. Arroyo, E., Selker, T., and Wei, W. (2006). Usability tool for analysis of web designs using mouse tracks. In Proceedings of Conference on Human Factors in Computing Systems, CHI'06, pages 484-489, New York, NY, USA. ACM.
  4. Atterer, R., Wnuk, M., and Schmidt, A. (2006). Knowing the user's every move: user activity tracking for website usability evaluation and implicit interaction. In Proceedings of the 15th International Conference on World Wide Web, WWW'06, pages 203-212, New York, NY, USA. ACM.
  5. Bath, J. (1967). Answer-changing behaviour on objective examinations. The Journal of Educational Research, 1(61):105-107.
  6. Best, J. B. (1979). Item difficulty and answer changing. Teaching of Psychology, 6(4):228-240.
  7. Bilenko, M. and White, R. W. (2008). Mining the search trails of surfing crowds: identifying relevant websites from user activity. In Proceeding of the 17th International Conference on World Wide Web, WWW'08, pages 51-60, New York, NY, USA. ACM.
  8. Chen, M. C., Anderson, J. R., and Sohn, M. H. (2001). What can a mouse cursor tell us more?: correlation Claypool, M., Le, P., Wased, M., and Brown, D. (2001). Implicit interest indicators. In Proceedings of the 6th International Conference on Intelligent User Interfaces, IUI'01, pages 33-40, New York, NY, USA. ACM.
  9. Dodge, B. (1995). Webquests: A technique for internetbased learning. Distance Educator, 1(2):10-13.
  10. Fox, S., Karnawat, K., Mydland, M., Dumais, S., and White, T. (2005). Evaluating implicit measures to improve web search. ACM Trans. Inf. Syst., 23:147-168.
  11. Golder, S. and Huberman, B. A. (2006). The structure of collaborative tagging systems. Journal of Information Science, 32(2):198-208.
  12. Huang, J., White, R. W., and Dumais, S. (2011). No clicks, no problem: using cursor movements to understand and improve search. In Proceedings of Conference on Human Factors in Computing Systems, CHI'11, pages 1225-1234, New York, NY, USA. ACM.
  13. Hunziker, H. W. (2006). Im Auge des Lesers foveale und periphere Wahrnehmung: vom Buchstabieren zur Lesefreude (In the eye of the reader: foveal and peripheral perception - from letter recognition to the joy of reading). Transmedia Zurich.
  14. Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay, G. (2005). Accurately interpreting clickthrough data as implicit feedback. In Proceedings of the 28th ACM Conference on Research and Development in Information Retrieval, SIGIR'05, pages 154-161, New York, NY, USA. ACM.
  15. Johnston, J. J. (1977). Exam taking speed and grades. Teaching of Psychology, 4:148-149.
  16. Jung, S., Herlocker, J. L., and Webster, J. (2007). Click data as implicit relevance feedback in web search. Inf. Process. Manage., 43:791-807.
  17. Kelly, D. and Belkin, N. J. (2004). Display time as implicit feedback: understanding task effects. In Proceedings of the 27th International ACM Conference on Research and Development in Information Retrieval, SIGIR'04, pages 377-384, New York, NY, USA. ACM.
  18. Kelly, D. and Teevan, J. (2003). Implicit feedback for inferring user preference: A bibliography. SIGIR Forum.
  19. Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., and Riedl, J. (1997). GroupLens: applying collaborative filtering to Usenet news. Commun. ACM, 40:77-87.
  20. Mandl, T. (2006). Implementation and evaluation of a quality-based search engine. In Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, HYPERTEXT'06, pages 73-84, New York, NY, USA. ACM.
  21. McClain, L. (1983). Behavior during examinations: A comparison of “a”, “c,” and “f” students. Teaching of Psychology, 10(2):69-71.
  22. Mueller, F. and Lockerd, A. (2001). Cheese: tracking mouse movement activity on websites, a tool for user modeling. In Proceedings of Conference on Human Factors in Computing Systems, CHI'01, pages 279- 280, New York, NY, USA. ACM.
  23. Murray, G. (2006). Asynchronous javascript technology and XML (ajax) with the java platform. http://java.sun.com/developer/technicalArticles/J2EE/ AJAX/.
  24. Nielsen, J. (2006). F-shaped pattern for reading web content. http://www.useit.com/alertbox/reading pattern. html.
  25. Nielsen, J. (2008). How little do users read? http://www.useit.com/alertbox/percent-text-read.htm l.
  26. Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab.
  27. Paul, C. A. and Rosenkoetter, J. S. (1980). The relationship between the time taken to complete an examination and the test score received. Teaching of Psychology, 7:108-109.
  28. Radlinski, F. and Joachims, T. (2005). Query chains: learning to rank from implicit feedback. In Proceedings of ACM Conference on Knowledge Discovery in Data Mining, KDD'05, pages 239-248, New York, NY, USA. ACM.
  29. Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. In Information Processing and Management, pages 513-523.
  30. Xu, S., Zhu, Y., Jiang, H., and Lau, F. C. M. (2008). A user-oriented webpage ranking algorithm based on user attention time. In Proceedings of the 23rd National Conference on Artificial intelligence - Volume 2, AAAI'08, pages 1255-1260. AAAI Press.
  31. Yanbe, Y., Jatowt, A., Nakamura, S., and Tanaka, K. (2007). Can social bookmarking enhance search in the web? In Proceedings of the 7th ACM/IEEE Joint Conference on Digital Libraries, JCDL'07, pages 107-116, New York, NY, USA. ACM.
Download


Paper Citation


in Harvard Style

Deufemia V., Giordano M., Polese G. and Tortora G. (2012). INFERRING WEB PAGE RELEVANCE FROM HUMAN-COMPUTER INTERACTION LOGGING . In Proceedings of the 8th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-8565-08-2, pages 653-662. DOI: 10.5220/0003938406530662


in Bibtex Style

@conference{webist12,
author={Vincenzo Deufemia and Massimiliano Giordano and Giuseppe Polese and Genoveffa Tortora},
title={INFERRING WEB PAGE RELEVANCE FROM HUMAN-COMPUTER INTERACTION LOGGING},
booktitle={Proceedings of the 8th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2012},
pages={653-662},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003938406530662},
isbn={978-989-8565-08-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - INFERRING WEB PAGE RELEVANCE FROM HUMAN-COMPUTER INTERACTION LOGGING
SN - 978-989-8565-08-2
AU - Deufemia V.
AU - Giordano M.
AU - Polese G.
AU - Tortora G.
PY - 2012
SP - 653
EP - 662
DO - 10.5220/0003938406530662