Subgroup Discovery Applied to the e-Commerce Website OrOliveSur.com

C. J. Carmona, S. Ramírez-Gallego, F. Torres, E. Bernal, M. J. del Jesus, S.r García

2012

Abstract

Subgroup discovery is a descriptive data mining technique whose main objective is the search for partial relations with unusual statistical characteristics with respect to a property of interest. In this paper, we present the application of a subgroup discovery technique in a users history data set associated to an e-commerce website called www.OrOliveSur.com which is related to sales of extra virgin olive oil and iberian products from Spain. The unusual knowledge is extracted using NMEEF-SD algorithm which is one of the most representative algorithm in this task throughout the literature. In order to apply this algorithm, information of website such as browser, source, keywords and so on is extracted through Google Analytics toolkit. Results obtained are discussed to provide advices and improve the design of the website.

References

  1. Carmona, C. J., González, P., del Jesus, M. J., and Herrera, F. (2009). An Analysis of Evolutionary Algorithms with Different Types of Fuzzy Rules in Subgroup Discovery. In Proceedings of the FUZZIEEE, pages 1706-1711.
  2. Carmona, C. J., González, P., del Jesus, M. J., and Herrera, F. (2010). NMEEF-SD: Non-dominated Multiobjective Evolutionary algorithm for Extracting Fuzzy rules in Subgroup Discovery. IEEE Transactions on Fuzzy Systems, 18(5):958-970.
  3. Carmona, C. J., González, P., del Jesus, M. J., and Herrera, F. (2011a). Analysis of the Impact of Using Different Diversity Functions for the Subgroup Discovery Algorithm NMEEF-SD. In Proceedings of the IEEE Int. Workshop on GEFS, pages 17-23.
  4. Carmona, C. J., González, P., del Jesus, M. J., Navío, M., and Jiménez, L. (2011b). Evolutionary Fuzzy Rule Extraction for Subgroup Discovery in a Psychiatric Emergency Department. Soft Computing, 15(12):2435-2448.
  5. Carmona, C. J., González, P., del Jesus, M. J., and Ventura, S. (2011c). Subgroup discovery in an e-learning usage study based on Moodle. In Proceedings of the ICEUTE, pages 446-451.
  6. Cooley, R., Mobasher, B., and Srivastava, J. (1997). Web Mining: Information and Pattern Discovery on the World Wide Web. On Tools with Artificial Intelligence, pages 558-567.
  7. Cooley, R., Mobasher, B., and Srivastava, J. (1999). Data preparation for mining World Wide Web browsing patterns. Knowledge and Information Systems, 1:5- 32.
  8. Deb, K., Pratap, A., Agrawal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions Evolutionary Computation, 6(2):182-197.
  9. Etzioni, O. (1996). The World Wide Web: quagmine or gold mine. Communications of the ACM, 39:65-68.
  10. Han, J. (2005). Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc.
  11. Herrera, F. (2008). Genetic fuzzy systems: taxomony, current research trends and prospects. Evolutionary Intelligence, 1:27-46.
  12. Herrera, F., Carmona, C. J., González, P., and del Jesus, M. J. (2011). An overview on Subgroup Discovery: Foundations and Applications. Knowledge and Information Systems, 29(3):495-525.
  13. Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 168-177.
  14. Kim, J. K., Cho, Y. H., Kim, W. J., Kim, J. R., and Suh, J. H. (2002). A personalized recommendation procedure for Internet shopping support. Electronic Commerce Research and Applications, 1(3-4):301-313.
  15. Kloesgen, W. (1996). Explora: A Multipattern and Multistrategy Discovery Assistant. In Advances in Knowledge Discovery and Data Mining, pages 249-271. American Association for Artificial Intelligence.
  16. Lazcorreta, E., Botella, F., and Fernandez-Caballero, A. (2008). Towards personalized recommendation by two-step modified Apriori data mining algorithm. Expert Systems with Applications, 35(3):1422-1429.
  17. Markov, Z. and Larose, D. T. (2007). Data Mining The Web. Uncovering patterns in Web Content, Structure and Usage. Wiley-Interscience.
  18. Min, D. H. and Han, I. (2005). Detection of the customer time-variant pattern for improving recommender systems. Expert Systems with Applications, 28(2):189- 199.
  19. Moral-Pajares, E. and Lanzas-Molina, J. R. (2009). La exportacion de aceite de oliva virgen en Andalucia: Dinamica y factores determinantes. Revista de estudios regionales, 86(45-70).
  20. Schafer, J. B., Konstan, J. A., and Riedl, J. (2001). Ecommerce recommendation applications. Data Mining and Knowledge Discovery, 5(1-2):115-153.
  21. Soares, C., Peng, Y., Meng, J., Washio, T., and Zhou, Z. H., editors (2008). Applications of data mining in e-business and finance. Frontiers in artificial intelligence and applications. IOS Press.
  22. Wrobel, S. (1997). An Algorithm for Multi-relational Discovery of Subgroups. In Proceedings of the 1st European Symposium on Principles of Data Mining and Knowledge Discovery, volume 1263 of LNAI, pages 78-87. Springer.
  23. Wrobel, S. (2001). Inductive logic programming for knowledge discovery in databases, chapter Relational Data Mining, pages 74-101. Springer.
  24. Zhang, Y. and Jiao, J. (2007). An associative classificationbased recommendation system for personalization in b2c e-commerce applications. Expert Systems with Applications, 33(2):357-367.
Download


Paper Citation


in Harvard Style

Carmona C., Ramírez-Gallego S., Torres F., Bernal E., J. del Jesus M. and García S. (2012). Subgroup Discovery Applied to the e-Commerce Website OrOliveSur.com . In Proceedings of the 14th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8565-11-2, pages 239-244. DOI: 10.5220/0003982302390244


in Bibtex Style

@conference{iceis12,
author={C. J. Carmona and S. Ramírez-Gallego and F. Torres and E. Bernal and M. J. del Jesus and S.r García},
title={Subgroup Discovery Applied to the e-Commerce Website OrOliveSur.com},
booktitle={Proceedings of the 14th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2012},
pages={239-244},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003982302390244},
isbn={978-989-8565-11-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 14th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - Subgroup Discovery Applied to the e-Commerce Website OrOliveSur.com
SN - 978-989-8565-11-2
AU - Carmona C.
AU - Ramírez-Gallego S.
AU - Torres F.
AU - Bernal E.
AU - J. del Jesus M.
AU - García S.
PY - 2012
SP - 239
EP - 244
DO - 10.5220/0003982302390244