Control and Model Parameters Identification of Inertia Wheel Pendulum

Paweł Drapikowski, Jarosław Gośliński, Adam Owczarkowski

2012

Abstract

This paper presents control method of an inverted pendulum with an inertial drive (IWP Inertia Wheel Pendulum). This is a non-linear, underactuated mechanical system and therefore it has more degrees of freedom than control variables. In application, electric motor has been placed on the pendulum top and it is a source of torque, which accelerates the flywheel. Position of the pendulum depends on the acceleration of the flywheel. This paper shows algorithm for the real object to keep the inertia wheel pendulum in the vertical position at equilibrium point. In order to achive this aim, authors decided to concentrate on modern and advanced techniques of control and estimation such as LQR regulator, sensor fusion, extended Kalman Filter and model parameters identification.

References

  1. Bradshaw, A. and Shao, J. (1996). Swing-up control of inverted pendulum systems. volume 14, pages 397-405. Robotica.
  2. In-Won, P., L. Bum-Joo, K. Y.-H., Ji-Hyeong, H., and JongHwan, K. (2010). Multi-objective quantum-inspired evolutionary algorithm-based. IEEE World Congress on Computational Intelligence, pages 18-23.
  3. Li, W. and Todorov, E. (2004). Iterative linear quadratic regulator design for nonlinear biological movement systems. In in Proc. of Int. Conf. on Informatics in Control, pages 1-8, Setubal Portugal.
  4. Sauer, P. (2011). Sterowanie procesami ciagymi i dyskretnymi - liniowe dyskretne rownania stanu.
  5. Spong, M. W. and P. Corke, R. L. (1999). Nonlinear control of the inertia wheel pendulum. In research under grants CMS-9712170 and ECS-9812591, Urbana, Kenmore, France.
  6. Wang, H., Dong, H., He, L., Shi, Y., and Zhang, Y. (2010). Design and simulation of lqr controller with the linear inverted pendulum. In International Conference on Electrical and Control Engineering, China.
  7. Yishao, Z. (1996). Convergence of the discrete-time riccati equation to its maximal solution. In Department of Mathematics Stockholm University, Sweden.
  8. Zabczyk, J. (1991). Zarys matematycznej teorii sterowania. Wydawnictwo Naukowe PWN.
  9. Zhang, B. and Wang, J. G. (2010). The analysis and simulation of first-order inverted pendulum control system based on lqr. In Third International Symposium on Information Processing, China.
Download


Paper Citation


in Harvard Style

Drapikowski P., Gośliński J. and Owczarkowski A. (2012). Control and Model Parameters Identification of Inertia Wheel Pendulum . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-21-1, pages 574-579. DOI: 10.5220/0003990405740579


in Bibtex Style

@conference{icinco12,
author={Paweł Drapikowski and Jarosław Gośliński and Adam Owczarkowski},
title={Control and Model Parameters Identification of Inertia Wheel Pendulum},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2012},
pages={574-579},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003990405740579},
isbn={978-989-8565-21-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Control and Model Parameters Identification of Inertia Wheel Pendulum
SN - 978-989-8565-21-1
AU - Drapikowski P.
AU - Gośliński J.
AU - Owczarkowski A.
PY - 2012
SP - 574
EP - 579
DO - 10.5220/0003990405740579