A Fault-Tolerant Controller for an SP-100 Space Nuclear Reactor

Ju Hyun Kim, Dae Seup Kim, Man Gyun Na

2012

Abstract

The control system is a key element of space reactor design to meet the space mission requirements of safety, reliability, survivability, economics, and autonomous action. The objectives of the proposed model predictive control are to minimize both the difference between the predicted TE power and the desired power, and the variation of control drum angle that adjusts the control reactivity. A genetic algorithm is used to optimize the model predictive controller. The model predictive controller is integrated with a fault detection and diagnostics algorithm so that the controller can work properly even under input and output measurement faults. Simulation results of the proposed controller show that the TE generator power level controlled by the proposed controller could track the target power level effectively even under measurement faults, satisfying all control constraints.

References

  1. S. F. Demuth, 2003, SP-100 Space Reactor Design, Progress in Nuclear Energy, Vol. 42, No. 3, pp. 323- 359.
  2. Y. B. Shtessel, 1998, Sliding Mode Control of the Space Nuclear Reactor System, IEEE Trans. Aerospace and Electronic Systems, Vol. 34, No. 2, pp. 579-589.
  3. M. G. Na and B. R. Upadhyaya, Aug. 2006, Model Predictive Control of an SP-100 Space Reactor Using Support Vector Regression and Genetic Optimization, IEEE Trans. Nucl. Sci., Vol. 53, No. 4, pp. 2318-2327.
  4. M. G. Na and B. R. Upadhyaya, Nov./Dec., 2006, Application of Model Predictive Control Strategy Based on Fuzzy Identification to an SP-100 Space Reactor, Annals of Nuclear Energy, Vol. 33, Nos. 17- 18, pp. 1467-1478.
  5. M. G. Na, B. R. Upadhyaya, X. Xu, and I. J. Hwang, Nov. 2006, Design of a Model Predictive Power Controller for an SP-100 Space Reactor, Nucl. Sci. Eng., Vol. 154, No. 3, pp. 353-366.
  6. S. L. Chiu, 1994, Fuzzy Model Identification Based on Cluster Estimation, J. Intell. Fuzzy Systems, Vol. 2, pp. 267-278.
  7. H. Sarimveis and G. Bafas, 2003, Fuzzy Model Predictive Control of Non-linear Processes Using Genetic Algorithms, Fuzzy Sets Systems, Vol. 139, pp. 59-80.
  8. M. G. Na and I. J. Hwang, 2006, Design of a PWR Power Controller Using Model Predictive Control Optimized by a Genetic Algorithm, Nucl. Eng. Tech., Vol. 38, No. 1, pp. 81-92.
  9. W. H. Kwon and A. E. Pearson, 1977, A Modified Quadratic Cost Problem and Feedback Stabilization of a Linear System, IEEE Trans. Automatic Control, Vol.22, No. 5, pp. 838-842.
  10. J. Richalet, A. Rault, J. L. Testud, and J. Papon, 1978, Model Predictive Heuristic Control: Applications to Industrial Processes, Automatica, Vol.14, pp. 413- 428.
  11. C. E. Garcia, D. M. Prett, and M. Morari, 1989, Model Predictive Control: Theory and Practice - A Survey, Automatica, Vol. 25, No. 3, pp. 335-348.
Download


Paper Citation


in Harvard Style

Kim J., Kim D. and Na M. (2012). A Fault-Tolerant Controller for an SP-100 Space Nuclear Reactor . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-21-1, pages 452-457. DOI: 10.5220/0004006704520457


in Bibtex Style

@conference{icinco12,
author={Ju Hyun Kim and Dae Seup Kim and Man Gyun Na},
title={A Fault-Tolerant Controller for an SP-100 Space Nuclear Reactor},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2012},
pages={452-457},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004006704520457},
isbn={978-989-8565-21-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A Fault-Tolerant Controller for an SP-100 Space Nuclear Reactor
SN - 978-989-8565-21-1
AU - Kim J.
AU - Kim D.
AU - Na M.
PY - 2012
SP - 452
EP - 457
DO - 10.5220/0004006704520457