Simulation and Multi-Objective Optimization of Vaccuum Ethanol Fermentation

Jules Thibault, Rubens Maciel Filho, Marina O. S. Dias, Tassia L. Junqueira, Otavio Cavalett, Charles D. F. Jesus, Carlos E. V. Rossell, Antonio Bonomi

2012

Abstract

With the overall objective of optimizing an integrated first and second generation bioethanol production plant, a simple illustrative example is first used to examine the advantages and challenges of using a combination of VBA and UniSim Design for multi-objective optimization. In this paper, the simulation and optimization of a vacuum fermentation system using glucose and xylose as substrates is performed. The simulation of the fermentation system and the optimization are performed in the VBA environment, while UniSim Design is used to provide thermodynamic data necessary to perform calculations and used to simulate the downstream portion of the fermentation vacuum system. The Pareto domain of the system was circumscribed based on three decision variables (starting time of vacuum, rate of broth removal by vacuum and condenser temperature) and four objective functions (minimum ethanol loss, maximum productivity, minimum residual sugars and minimum compression energy). The procedure developed has allowed to easily circumscribe the Pareto domain of this system and to observe clearly the compromises that are required when all objective functions are optimized simultaneously. Some challenges to overcome are the time required for exchanging information between VBA and UniSim Design and the risk of non-converging for complex problems. For this procedure to be implemented effectively for the integrated ethanol plant, some innovative measures need to be developed.

References

  1. Cardona, C. A., Sanchez, O. J. 2007. Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 98, 2415-2457.
  2. Deb, K. 2001. Multi-objective optimization using evolutionary algorithms. New York: Wiley.
  3. Dias, M. O. S., Maciel Filho, R., Maciel, M. R. W., Rossell, C.E.V., Bioethanol production from sugarcane and sugarcane bagasse investigation of plant performance and energy consumption. 18th International Congress of Chemical and Process Engineering - CHISA, 2008.
  4. Dias, M. O. S., Junqueira, T. L., Cavalett, O., Cunha, M. P., Jesus, C. D. F., Rossell, C. E. V., Maciel Filho, R., Bonomi, A. 2012. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technology, 103, 152- 161.
  5. Einicke, W.D., Gläser, B., Schöoullner, R. 1991. In-Situ recovery of ethanol from fermentation broth by hydrophobic adsorbents. Acta Biotechnologica, 11(4), 353-358.
  6. Groot, W. J., Kraayenbrink, M. R., Waldram, R. H., Lans R. G. J. M., Luyben K. Ch. A. M. 1992. Ethanol production in an integrated process of fermentation and ethanol recovery by pervaporation. 8, 99-111.
  7. Haupt, R. L. and Haupt, S. E. 2004. Practical Genetic Algorithms, 2nd Ed., John Wiley & Sons.
  8. Kumar, S, Singh, S.P., Mishra, I.M., Adhikari, D.K. 2010. Feasibility of ethanol production with enhanced sugar concentration in bagasse hydrolysate at high temperature using Kluyveromyces sp. IIPE453. Biofuels, 1(5), 697-704.
  9. Jassal, D.S., Zhang, Z., Hill, G.A. 2009. In-situ extraction and purification of ethanol using commercial oleic acid. Can. J. Chem. Eng., 72(5), 822-827.
  10. Krissek, G. 2008. Future Opportunities and Challenges for Ethanol Production and Technology. http://www. farmfoundation.org/news/articlefiles/378-Krissek% 202-5-08.pdf.
  11. Leksawasdi, N., Joachimsthal, E.L., Rogers, P.L. 2001. Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis. Biotechnology Letters 23: 1087-1093.
  12. Liu, H.S., Hsien-Wen, H. 1990. Analysis of gas stripping during ethanol fermentation - I. In a continuous stirred tank reactor. Chemical Engineering Science. 45(5), 1289-1299.
  13. Mussatto, S.I., Dragone, G., Guimarães P.M.R., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., Teixeira, J.A. 2010. Technological trends, global market, and challenges of bio-ethanol production
  14. Nguyen, V.D., Kosuge, H., Auresenia, J., Tan, R., Brondial, Y. 2009. Effect of vacuum pressure on ethanol fermentation. Journal of Applied Sciences, 9(17), 3020-3026.
  15. NRCan (March 24, 2009). Energy Sources. Consulted August 5, 2011. Natural Resources Canada: http://www.nrcan.gc.ca/eneene/sources/pripri/aboapreng.php.
  16. NRCan (January 4, 2011). Personal: Transportation. Consulted August 8, 2011.Natural Resources Canada: http://oee.nrcan.gc.ca/publications/infosource/pub/vehi clefuels/ethanol/M92_257_2003.cfm.
  17. Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., Monot, F.. 2009. New improvements for lignocellulosic ethanol, Curr. Opinions. Biotechnol., 20, 372-380.
  18. Park, C. H., Geng, Q. 1992. Simultaneous Fermentation and Separation in the Ethanol and Abe Fermentation. Separation and Purification Reviews, 21(2) 127-174.
  19. Perrin, E., Mandrille, A., Oumoun, M., Fonteix, C., Marc, I. (1997). Optimization globale par stratégie d'évolution: Technique utilisant la Génétique des individus diploides. RAIRO- Recherche Operationelle 31, 161-201.
  20. Thibault, J. (2008). Net Flow and Rough Sets: Two Methods For Ranking the Pareto Domain. In G. Rangaiah (Ed.), Chapter 7 - Multi-Objective Optimization: Techniques and Applications in Chemical Engineering. World Scientific Publishing.
  21. U.S. EIA (August 2010). Annual Energy Review 2009.ConsultedAugust 5, 2011, www.eia.gov/aer.
Download


Paper Citation


in Harvard Style

Thibault J., Maciel Filho R., O. S. Dias M., L. Junqueira T., Cavalett O., D. F. Jesus C., E. V. Rossell C. and Bonomi A. (2012). Simulation and Multi-Objective Optimization of Vaccuum Ethanol Fermentation . In Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-8565-20-4, pages 79-86. DOI: 10.5220/0004014400790086


in Bibtex Style

@conference{simultech12,
author={Jules Thibault and Rubens Maciel Filho and Marina O. S. Dias and Tassia L. Junqueira and Otavio Cavalett and Charles D. F. Jesus and Carlos E. V. Rossell and Antonio Bonomi},
title={Simulation and Multi-Objective Optimization of Vaccuum Ethanol Fermentation},
booktitle={Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2012},
pages={79-86},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004014400790086},
isbn={978-989-8565-20-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Simulation and Multi-Objective Optimization of Vaccuum Ethanol Fermentation
SN - 978-989-8565-20-4
AU - Thibault J.
AU - Maciel Filho R.
AU - O. S. Dias M.
AU - L. Junqueira T.
AU - Cavalett O.
AU - D. F. Jesus C.
AU - E. V. Rossell C.
AU - Bonomi A.
PY - 2012
SP - 79
EP - 86
DO - 10.5220/0004014400790086