Monte Carlo Localization using the Global Appearance of Omnidirectional Images - Algorithm Optimization to Large Indoor Environments
Lorenzo Fernández, Luis Payá, David Valiente, Arturo Gil, Oscar Reinoso
2012
Abstract
In this paper we deal with the problem of robot localization using the visual information provided by a single omnidirectional camera mounted on the robot, using techniques based on the global appearance of panoramic images. Our main objective consists in showing the feasibility of the appearance-based approaches in a localization task in a relatively large and real environment. First, we study the approaches that permit us to describe globally the visual information so that it represents with accuracy locations in the environment. Then, we present the probabilistic approach we have used to compute the most probable pose of the robot when it performs a trajectory within the map. At the end, we describe the kind of environments and maps we have used to test our localization algorithms and the final results. The experimental results we show have been obtained using real indoor omnidirectional images, captured in an office building under real conditions.
References
- Fernandez, L., Paya, L., Reinoso, O., and Amoros, F. (2011). Appearance-based visual odometry with omnidirectional images. a practical application to topological mapping. In Proc. of ICINCO, pages 205-210.
- Fox, D., Burgard, W., and Thrun, S. (1999). Markov localization for mobile robots in dynamic environments. JAIR, 11:391-427.
- Kirby, M. (2001). Geometric data analysis. Wiley Interscience.
- Kröse, B., Bunschoten, R., Hagen, S. T., Terwijn, B., and Vlassis, N. (2004). Environment modeling and localization from an omnidirectional vision system. IEEE Robotics and Automation Magazine.
- Menegatti, E., Maeda, T., and Ishiguro, H. (2004a). Imagebased memory for robot navigation using properties of omnidirectional images. Robotics and Autonomous Systems, 47(4):251-276.
- Menegatti, E., Zocaratto, M., Pagello, E., and Ishiguro, H. (2004b). Image-based monte carlo localisation with omnidirectional images. Robotics and Autonomous Systems, 48(1):17-30.
- Rubin, D. B. (1988). Bayesian statistics 3. Oxford University Press.
- Smith, A. F. M. and Gelfand, A. E. (1992). Bayesian statistics without tears: a sampling-resampling perspective. American Statistician, 46(2):84-88.
- Thrun, S., Fox, D., Burgard, W., and Dellaert, F. (2000). Robust monte carlo localization for mobile robots. Artificial Intelligence, 128(1-2):99-141.
Paper Citation
in Harvard Style
Fernández L., Payá L., Valiente D., Gil A. and Reinoso O. (2012). Monte Carlo Localization using the Global Appearance of Omnidirectional Images - Algorithm Optimization to Large Indoor Environments . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-22-8, pages 439-442. DOI: 10.5220/0004031904390442
in Bibtex Style
@conference{icinco12,
author={Lorenzo Fernández and Luis Payá and David Valiente and Arturo Gil and Oscar Reinoso},
title={Monte Carlo Localization using the Global Appearance of Omnidirectional Images - Algorithm Optimization to Large Indoor Environments},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2012},
pages={439-442},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004031904390442},
isbn={978-989-8565-22-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Monte Carlo Localization using the Global Appearance of Omnidirectional Images - Algorithm Optimization to Large Indoor Environments
SN - 978-989-8565-22-8
AU - Fernández L.
AU - Payá L.
AU - Valiente D.
AU - Gil A.
AU - Reinoso O.
PY - 2012
SP - 439
EP - 442
DO - 10.5220/0004031904390442