Support Vector Machines for Identification of HCCI Combustion Dynamics

Vijay Manikandan Janakiraman, Jeff Sterniak, Dennis Assanis

2012

Abstract

Homogeneous charge compression ignition (HCCI) is a promising technology for Internal Combustion Engines to improve efficiency and reduce nitrogen oxides emissions. Control of HCCI combustion is often model-based, and it is vital to have a good model of the engine to make control decisions. The HCCI engine is characterized by complex chemical kinetics whose physical modeling is difficult and laborious. Identification is an effective alternative to quickly develop control oriented models for such systems. This paper formulates a Support Vector Regression (SVR) methodology for developing identification models capturing HCCI combustion behavior. Measurable quantities from the engine such as net mean effective pressure (NMEP) and crank angle at 50% mass fraction burned (CA50) can be used to characterize and control the HCCI engine and are considered for identification in this study. The selected input variables include injected fuel mass (FM) and valve events {intake valve opening (IVO), exhaust valve closing (EVC)}. Transient data from a gasoline HCCI engine recorded at stable HCCI conditions is used for training, validating and testing the SVR models. Comparisons with the experimental results show that SVR with Gaussian kernels can be a powerful approach for identification of a complex combustion system like the HCCI engine.

References

  1. Agashe, S., Ghatol A. and Agashe, S. (2007). Automation of heat exchanger using neural network. In International Journal of Mathematical and Computer Sciences.
  2. Aoyama, T., Hattori Y. Mizuta J. and Sato, Y. (1996). An experimental study on premixed-charge compression ignition gasoline engine. In SAE Technical Paper 960081.
  3. Bengtsson, J., Strandh P. Johansson R. Tunestal P. and Johansson, B. (2006). Model predictive control of homogeneous charge compression ignition (hcci) engine dynamics. In 2006 IEEE International Conference on Control Applications.
  4. Bengtsson, J., Strandh P. Johansson R. Tunestl P. Johansson B. (2010). Hybrid control of homogeneous charge compression ignition (hcci) engine dynamics. In International Journal of Control. Taylor & Francis.
  5. 20 20 20 20 40 40 40 40 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 100 120 140 160 180 20 40 60 80 100 120 140 160 180 Chang, Chih-Chung and Lin, Chih-Jen (2011). Libsvm: A library for support vector machines. In ACM Transactions on Intelligent Systems and Technology. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
  6. Chiang, C. J. and Chen, C. L. (2010). Constrained control of homogeneous charge compression ignition (hcci) engines. In 5th IEEE Conference on Industrial Electronics and Applications (ICIEA).
  7. Chitralekha, S. B., Shah S. L. (2010). Application of support vector regression for developing soft sensors for nonlinear processes. In The Canadian Journal of Chemical Engineering. Wiley.
  8. Christensen, M., Einewall P. and Johansson, B. (1997). Homogeneous charge compression ignition (hcci) using iso-octane, ethanol and natural gas- a comparison to spark ignition operation. In SAE Technical Paper 972874.
  9. Clarke, S. M., Griebsch J. H. and Simpson, T. W. (2005). Analysis of support vector regression for approximation of complex engineering analyses. In Journal of Mechanical Design.
  10. Drezet, P. M. L. and Harrison, R. F. (1998). Support vector machines for system identification. In UKACC International Conference on Control.
  11. Drucker, H., Burges C. J. C. Kaufman L. Smola A. Vapnik V. (1996). Support vector regression machines.
  12. Gretton, A., Douce A. Herbrich R. Rayner P. J. W. and Scholkop, B. (2001). Support vector regression for black-box system identification. In Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing.
  13. Hammer, B. and Gersmann, K. (2003). A note on the universal approximation capability of support vector machines. In Neural Processing Letters. Kluwer Academic Publishers.
  14. Hastie, Tibshirani and Friedman (1995). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2 edition.
  15. Kim, K. J. (2003). Financial time series forecasting using support vector machines. In Neurocomputing. Elsevier.
  16. Kruse, T., Kurz S. and Lang, T. (2010). Modern statistical modelling and evolutionary optimisation methods for the broad use in ecu calibration. In 6th IFAC Symposium Advances in Automotive Control.
  17. Mller, K. R., Smola A. J. Ratsch G. Scholkopf B. Kohlmorgen J. and Vapnik, V. (1997). Predicting time series with support vector machines. In Artificial Neural Networks ICANN'97. Springer Berlin / Heidelberg.
  18. Ramon, M. M., Alvarez J. L. R. Valls G. C. Mari J. M. Vazquez A. N. Olivas E. S. Vidal A. R. F. (2006). Support vector machines for nonlinear kernel arma system identification. In IEEE Transactions on Neural Networks.
  19. Ravi, N., Roelle M. J. Liao H. H. Jungkunz A. F. Chang C. F. Park S. and Gerdes, J. C. (2009). Model-based control of hcci engines using exhaust recompression. In IEEE Transactions on Control Systems Technology.
  20. Schlkopf, B., Bartlett P. Smola A. and Williamson, R. (1998). Support vector regression with automatic accuracy control. In Proceedings of ICANN'98, Perspectives in Neural Computing.
  21. Schlkopf, B., Smola A. J. Williamson R. C. and Bartlett, P. L. (2000). New support vector algorithms. In Neural Computation. MIT Press.
  22. Scholkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA.
  23. Smola, A. J. and Schlkopf, B. (2003). A tutorial on support vector regression. Technical report, Statistics and Computing.
  24. Sun, J., Zhou Y. Bai Y. and Luo, J. (2006). Nonlinear noise reduction of chaotic time series based on multi-dimensional recurrent least squares support vector machines. In Neural Information Processing, Lecture Notes in Computer Science. Springer Berlin / Heidelberg.
  25. Thring, R. (1989). Homogeneous-charge compressionignition (hcci) engines. In SAE Technical Paper 892068.
  26. Trejo, J. A. R., Yu W. Li X. (2006). Support vector machine for nonlinear system on-line identification. In 2006 3rd International Conference on Electrical and Electronics Engineering.
  27. Vapnik, V., Golowich S. E. and Smola, A. (1996). Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems.
  28. Vapnik, V. (1995). The nature of statistical learning theory. Springer, New York.
  29. Wang, X., Du Z. Chen J. and Pan, F. (2009). Dynamic modeling of biotechnical process based on online support vector machine. In Journal of Computers. Academy Publisher.
Download


Paper Citation


in Harvard Style

Janakiraman V., Sterniak J. and Assanis D. (2012). Support Vector Machines for Identification of HCCI Combustion Dynamics . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-21-1, pages 385-393. DOI: 10.5220/0004035903850393


in Bibtex Style

@conference{icinco12,
author={Vijay Manikandan Janakiraman and Jeff Sterniak and Dennis Assanis},
title={Support Vector Machines for Identification of HCCI Combustion Dynamics},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2012},
pages={385-393},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004035903850393},
isbn={978-989-8565-21-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Support Vector Machines for Identification of HCCI Combustion Dynamics
SN - 978-989-8565-21-1
AU - Janakiraman V.
AU - Sterniak J.
AU - Assanis D.
PY - 2012
SP - 385
EP - 393
DO - 10.5220/0004035903850393