Spacecrafts' Control Systems Effective Variants Choice with Self-configuring Genetic Algorithm
Eugene Semenkin, Maria Semenkina
2012
Abstract
The work of the spacecraft control system is modeled with Markov chains. Small and large models for the technological and command-programming control contours are developed. The way of the calculation of the control contour effectiveness indicators is described. Special self-configuring genetic algorithm that requires no settings determination and parameter tuning is proposed for choosing effective variants of spacecraft control system. The high performance of the suggested algorithm is demonstrated through experiments with test problems and then is validated by the solving hard optimization problems.
References
- Angeline, P. J., 1995. Adaptive and self-adaptive evolutionary computations. In: Palaniswami M. and Attikiouzel Y., editors, Computational Intelligence: A Dynamic Systems Perspective, pp. 152-163. IEEE Press.
- De Jong, K. A., Spears, W., 1991. On the Virtues of Parameterized Uniform Crossover. In: Richard K. Belew, Lashon B. Booker, editors, Proceedings of the 4th International Conference on Genetic Algorithms, pp. 230-236. Morgan Kaufmann.
- Eiben, A. E., Smith, J. E., 2003. Introduction to evolutionary computing. Springer-Verlag, Berlin, Heidelberg.
- Eiben, A. E., Hinterding, R., and Michalewicz, Z., 1999. Parameter control in evolutionary algorithms. In: IEEE Transactions on evolutionary computation, 3(2):124-141.
- Finck, S., Hansen, N., Ros, R., and Auger, A., 2009. Realparameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE.
- Gomez, J., 2004. Self-Adaptation of Operator Rates in Evolutionary Algorithms. In Deb, K. et al., editors, GECCO 2004, LNCS 3102, pp. 1162-1173.
- Haupt, R. L., Haupt, S. E., 2004. Practical genetic algorithms. John Wiley & Sons, Inc., Hoboken, New Jersey.
- Meyer-Nieberg, S., Beyer, H.-G., 2007. Self-Adaptation in Evolutionary Algorithms. In: F. Lobo, C. Lima, and Z. Michalewicz, editors, Parameter Setting in Evolutionary Algorithm, pp. 47-75.
- Semenkin, E. S., Semenkina, M. E., 2007. Application of genetic algorithm with modified uniform recombination operator for automated implementation of intellectual information technologies. In: Vestnik. Scientific Journal of the Siberian State Aerospace University named after academician M. F. Reshetnev. - 2007. - Issue 3 (16). - Pp. 27-32. (In Russian, abstract in English).
- Syswerda, G., 1989. Uniform crossover in genetic algorithms, In: J. Schaffer, editor, Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 2-9. Morgan Kaufmann.
Paper Citation
in Harvard Style
Semenkin E. and Semenkina M. (2012). Spacecrafts' Control Systems Effective Variants Choice with Self-configuring Genetic Algorithm . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-21-1, pages 84-93. DOI: 10.5220/0004042200840093
in Bibtex Style
@conference{icinco12,
author={Eugene Semenkin and Maria Semenkina},
title={Spacecrafts' Control Systems Effective Variants Choice with Self-configuring Genetic Algorithm },
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2012},
pages={84-93},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004042200840093},
isbn={978-989-8565-21-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Spacecrafts' Control Systems Effective Variants Choice with Self-configuring Genetic Algorithm
SN - 978-989-8565-21-1
AU - Semenkin E.
AU - Semenkina M.
PY - 2012
SP - 84
EP - 93
DO - 10.5220/0004042200840093