Flocking for Networks of Mobile Robots with Nonlinear Dynamics

Reza Olfati-Saber, Lamia Iftekhar

2012

Abstract

In this paper, we address the problem of flocking for networks of nonholonomic mobile robots with nonlinear dynamics given that a flocking algorithm for particles is known. Our approach relies on the use of near-identity change of coordinates that transform the nonlinear dynamics of the robot to a partially-linear normal form with a double-integrator linear subsystem. The flocking algorithm is then applied to the linear part. The inverse of the near-identity transformation provides the flocking algorithm for the networked nonholonomic robots. We prove the emergence of flocking behavior for robotic networks with nonlinear dynamics according to the formal definition of flocking in Olfati-Saber’s flocking paper (TAC ’06). Simulation results are provided for large-scale networks of two-wheeled robots with nonlinear dynamics as models of Khepera-III robots that demonstrate the effectiveness of our proposed transformation and algorithm.

References

  1. Chopra, N., Stipanovic, D., and Spong, M. (2008). On synchronization and collision avoidance for mechanical systems. In American Control Conference, 2008, pages 3713 -3718.
  2. Cucker, F. and Smale, S. (2007). Emergent behavior in flocks. IEEE Trans. on Automatic Control, 52(5):852- 862.
  3. Dimarogonas, D. and Kyriakopoulos, K. (2006a). On the state agreement problem for multiple unicycles. In American Control Conference, 2006, page 6 pp.
  4. Dimarogonas, D. and Kyriakopoulos, K. (2006b). On the state agreement problem for multiple unicycles with varying communication links. In Decision and Control, 2006 45th IEEE Conference on, pages 4283 - 4288.
  5. Dimarogonas, D. and Kyriakopoulos, K. (2007). Connectivity preserving state agreement for multiple unicycles. In American Control Conference, 2007. ACC 7807, pages 1179 -1184.
  6. Dong, W. and Farrell, J. (2008). Cooperative control of multiple nonholonomic mobile agents. Automatic Control, IEEE Transactions on, 53(6):1434 -1448.
  7. D'Orsogna, M. R., Chuang, Y.-L., Bertozzi, A. L., and Chayes, L. (2006). Self-propelled particles with softcore interactions: patterns, stability, and collapse. Physical Review Letters.
  8. Helbing, D., Farkas, I., and Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407:487- 490.
  9. Levine, H., Rappel, W.-J., and Cohen, I. (2001). Selforganization in systems of self-propelled particles. Phys, Rev. E, 63:017101.
  10. Mogilner, A. and Edelstein-Keshet, L. (1999). A non-local model for a swarm. J. Math. Biology, 38:534-570.
  11. Moshtagh, N. and Jadbabaie, A. (2007). Distributed geodesic control laws for flocking of nonholonomic agents. IEEE Trans. on Automatic Control, 52(4):681-686.
  12. Olfati-Saber, R. (2002). Near-Identity diffeomorphisms and exponential e-tracking and e-stabilization of firstorder nonholonomic SE(2) vehicles. Proc. of the 2002 American Control Conference, 6:4690-4695.
  13. Olfati-Saber, R. (2006). Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory. IEEE Trans. on Automatic Control, 51(3):401-420.
  14. Parrish, J. K., Viscido, S. V., and Grunbaum, D. (2002). Self-organized fish schools: an examination of emergent properties. Biol. Bull., 202:296-305.
  15. Partridge, B. L. (1982). The structure and function of fish schools. Scientific American, 246(6):114-123.
  16. Potss, W. K. (1984). The chorus-line hypothesis of maneuver in avian flocks. Nature, 309:344-345.
  17. Regmi, A., Sandoval, R., Byrne, R., Tanner, H., and Abdallah, C. (2005). Experimental implementation of flocking algorithms in wheeled mobile robots. In American Control Conference, 2005. Proceedings of the 2005, pages 4917 - 4922 vol. 7.
  18. Reynolds, C. W. (1987). Flocks, herds, and schools: a distributed behavioral model. Computer Graphics (ACM SIGGRAPH 7887 Conference Proceedings), 21(4):25- 34.
  19. Shimoyama, N., Sugawara, K., Mizuguchi, T., Hayakawa, Y., and Sano, M. (1996). Collective motion in a system of motile elements. Physical Review Letters, 76(20):3870-3873.
  20. Tanner, H., Jadbabaie, A., and Pappas, G. (2005). Flocking in teams of nonholonomic agents. In Kumar, V., Leonard, N., and Morse, A., editors, Cooperative Control, volume 309 of Lecture Notes in Control and Information Sciences, pages 458-460. Springer Berlin / Heidelberg.
  21. Toner, J. and Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 58(4):4828-4858.
  22. Topaz, C. M. and Bertozzi, A. L. (2004). Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math.
  23. Vicsek, T., Cziroók, A., Ben-Jacob, E., Cohen, I., and Shochet, O. (1995). Novel type of phase transition in a system of self-deriven particles. Phys. Rev. Letters, 75(6):1226-1229.
Download


Paper Citation


in Harvard Style

Olfati-Saber R. and Iftekhar L. (2012). Flocking for Networks of Mobile Robots with Nonlinear Dynamics . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-22-8, pages 353-359. DOI: 10.5220/0004048403530359


in Bibtex Style

@conference{icinco12,
author={Reza Olfati-Saber and Lamia Iftekhar},
title={Flocking for Networks of Mobile Robots with Nonlinear Dynamics},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2012},
pages={353-359},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004048403530359},
isbn={978-989-8565-22-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Flocking for Networks of Mobile Robots with Nonlinear Dynamics
SN - 978-989-8565-22-8
AU - Olfati-Saber R.
AU - Iftekhar L.
PY - 2012
SP - 353
EP - 359
DO - 10.5220/0004048403530359