A New Query Suggestion Algorithm for Taxonomy-based Search Engines

Roberto Zanon, Simone Albertini, Moreno Carullo, Ignazio Gallo

2012

Abstract

The objective of this work is the realization of an algorithm to provide a query suggestion feature in order to support the search engine of a commercial web site. Starting from web server logs, our solution creates a model analyzing the queries submitted by the users. Given a submitted query, the system searches the most adequate queries to suggest. Our method implements an already known session based proposal enriching it by exploiting specific information available in the current context: the category the user is browsing on the web site and a solution to overcome the limits of a pure session based approach considering also similarity between queries. Quantitative and qualitative experiments show that the proposed model is suitable in terms of resources employed and user’s satisfaction degree.

References

  1. Baeza-yates, R. A. (2007). Graphs from Search Engine Queries.
  2. Baeza-yates, R. A., Hurtado, C. A., and Mendoza, M. (2004). Query Recommendation Using Query Logs in Search Engines.
  3. Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., and Vigna, S. (2008). The query-flow graph: model and applications. In International Conference on Information and Knowledge Management, pages 609- 618.
  4. Boldi, P., Bonchi, F., Castillo, C., and Vigna, S. (2009). From ”dango” to ”japanese cakes”: Query reformulation models and patterns. In Web Intelligence, pages 183-190.
  5. Broccolo, D., Frieder, O., Nardini, F. M., Perego, R., and Silvestri, F. (2010). Incremental Algorithms for Effective and Efficient Query Recommendation.
  6. Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., and Li, H. (2008). Context-aware query suggestion by mining click-through and session data. In Knowledge Discovery and Data Mining, pages 875-883.
  7. Mat-Hassan M., L. M. (2005). Associating search and navigation behavior through log analysis. Journal of the American Society for Information Science and Technology, 56(9):913-934.
  8. M.P. Kato, T. Sakai, K. T. (2011). Query session data vs. clickthrough data as query suggestion resources. In ECIR 2011 Workshop on Information Retrieval Over Query Sessions.
  9. Ortiz-Cordova A., J. B. (2012). Classifying web search queries to identify high revenue generating customers. Journal of the American Society for Information Science and Technology. cited By (since 1996) 0; Article in Press.
  10. Pierrakos, D., Paliouras, G., Papatheodorou, C., and Spyropoulos, C. D. (2003). Web usage mining as a tool for personalization: A survey. User Modeling and User-Adapted Interaction, 13:311-372. 10.1023/A:1026238916441.
  11. Shoppydoo (2012). http://www.shoppydoo.it.
  12. Srivastava, J. and Cooley, R. (2000). Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations, 1:12-23.
  13. Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining. Addison Wesley.
Download


Paper Citation


in Harvard Style

Zanon R., Albertini S., Carullo M. and Gallo I. (2012). A New Query Suggestion Algorithm for Taxonomy-based Search Engines . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012) ISBN 978-989-8565-29-7, pages 151-156. DOI: 10.5220/0004108001510156


in Bibtex Style

@conference{kdir12,
author={Roberto Zanon and Simone Albertini and Moreno Carullo and Ignazio Gallo},
title={A New Query Suggestion Algorithm for Taxonomy-based Search Engines},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012)},
year={2012},
pages={151-156},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004108001510156},
isbn={978-989-8565-29-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012)
TI - A New Query Suggestion Algorithm for Taxonomy-based Search Engines
SN - 978-989-8565-29-7
AU - Zanon R.
AU - Albertini S.
AU - Carullo M.
AU - Gallo I.
PY - 2012
SP - 151
EP - 156
DO - 10.5220/0004108001510156