Ontology Enrichment based on Generic Basis of Association Rules for Conceptual Document Indexing
Lamia Ben Ghezaiel, Chiraz Latiri, Mohamed Ben Ahmed
2012
Abstract
In this paper, we propose the use of a minimal generic basis of association rules (ARs) between terms, in order to automatically enrich an initial domain ontology. For this purpose, three distance measures are defined to link the candidate terms identified by ARs, to the initial concepts in the ontology. The final result is a proxemic conceptual network which contains additional implicit knowledge. Therefore, to evaluate our ontology enrichment approach, we propose a novel document indexing approach based on this proxemic network. The experiments carried out on the OHSUMED document collection of the TREC 9 filtring track and MeSH ontology showed that our conceptual indexing approach could considerably enhance information retrieval effectiveness.
References
- Agrawal, R. and Skirant, R. (1994). Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Databases (VLDB 1994), pages 478-499, Santiago, Chile.
- Amirouche, F. B., Boughanem, M., and Tamine, L. (2008). Exploiting association rules and ontology for semantic document indexing. In Proceedings of the 12th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU'08), pages 464-472, Malaga, Espagne.
- Andreasen, T., Bulskov, H., Jensen, P., and Lassen, T. (2009). Conceptual indexing of text using ontologies and lexical resources. In Proccedings of the 8th International Conference on Flexible Query Answering Systems, FQAS 2009, volume 5822 of LNCS, pages 323-332, Roskilde, Denmark. Springer.
- Balcázar, J. L. (2010). Redundancy, deduction schemes, and minimum-size bases for association rules. Logical Methods in Computer Science, 6(2):1-33.
- Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., and Lakhal, L. (2000). Mining minimal non-redundant association rules using frequent closed itemsets. In Proceedings of the 1st International Conference on Computational Logic, volume 1861 of LNAI, pages 972- 986, London, UK. Springer.
- Baziz, M., Boughanem, M., Aussenac-Gilles, N., and Chrisment, C. (2005). Semantic cores for representing documents in IR. In Proceedings of the 2005 ACM Symposium on Applied Computing, SAC'05, pages 1011-1017, New York, USA. ACM Press.
- Ben Yahia, S., Gasmi, G., and Nguifo, E. M. (2009). A new generic basis of factual and implicative association rules. Intelligent Data Analysis, 13(4):633-656.
- Bendaoud, R., Napoli, A., and Toussaint, Y. (2008). Formal concept analysis: A unified framework for building and refining ontologies. In Proceedings of 16th International Conference on the Knowledge Engineering: Practice and Patterns (EKAW 2008), volume 5268 of LNCS, pages 156-171, Acitrezza, Italy. Springer.
- Benz, D., Hotho, A., and Stumme, G. (2010). Semantics made by you and me: Self-emerging ontologies can capture the diversity of shared knowledge. In Proceedings of the 2nd Web Science Conference (WebSci10), Raleigh, NC, USA.
- Cimiano, P., Hotho, A., Stumme, G., and Tane, J. (2004). Conceptual knowledge processing with formal concept analysis and ontologies. In Proceedings of the second International Conference on Formal Concept Analysis, ICFCA 2004, pages 189-207, Sydney, Australia.
- Di-Jorio, L., Bringay, S., Fiot, C., Laurent, A., and Teisseire, M. (2008). Sequential patterns for maintaining ontologies over time. In Proceedings of the International Conference On the Move to Meaningful Internet Systems, OTM 2008, volume 5332 of LNCS, pages 1385-1403, Monterrey, Mexico. Springer.
- Díaz-Galiano, M. C., García-Cumbreras, M. A., MartínValdivia, M. T., Montejo-Ráez, A., and na L ópez, L. A. U. (2008). Integrating MeSH Ontology to Improve Medical Information Retrieval. In Proceedings of the 8th Workshop of the Cross-Language Evaluation Forum, CLEF 2007, Advances in Multilingual and Multimodal Information Retrieval, volume 5152 of LNCS, pages 601-606, Budapest, Hungary. Springer.
- Dinh, D. and Tamine, L. (2011). Combining global and local semantic contexts for improving biomedical information retrieval. In Proceedings of the 33rd European Conference on IR Research, ECIR 2011, volume 6611 of LNCS, pages 375-386, Dublin, Ireland. Springer.
- Faatz, A. and Steinmetz, R. (2002). Ontology enrichment with texts from the www. In Proceedings of the 2nd ECML/PKDD-Workshop on Semantic Web Mining, pages 20-34, Helsinki, Finland.
- Ganter, B. and Wille, R. (1999). Formal Concept Analysis. Springer.
- Jones, K. S., Walker, S., and Robertson, S. E. (2000). A probabilistic model of information retrieval: development and comparative experiments. Information Processing and Management, 36(6):779-840.
- Latiri, C., Haddad, H., and Hamrouni, T. (2012).
- Latiri, C., Smali, K., Lavecchia, C., and Langlois, D. (2010). Mining monolingual and bilingual corpora. Intelligent Data Analysis, 14(6):663-682.
- Maedche, A., Pekar, V., and Staab, S. (2002). Ontology Learning Part One - On Discovering Taxonomic Relations from the Web, pages 301-322. Springer.
- Navigli, R. (2009). Word sense disambiguation: A survey. ACM Comput. Surv., 41:1-69.
- Navigli, R. and Velardi, P. (2006). Ontology enrichment through automatic semantic annotation of online glossaries. In Proceedings of 15th International Conference, EKAW 2006, Podebrady, Czech Republic, volume 4248 of LNCS, pages 126-140. Springer.
- Neshatian, K. and Hejazi, M. R. (2004). Text categorization and classification in terms of multiattribute concepts for enriching existing ontologies. In Proceedings of the 2nd Workshop on Information Technology and its Disciplines, WITID'04, pages 43-48, Kish Island, Iran.
- Parekh, V., Gwo, J., and Finin, T. W. (2004). Mining domain specific texts and glossaries to evaluate and enrich domain ontologies. In Proceedings of the International Conference on Information and Knowledge Engineering, IKE'04, pages 533-540, Las Vegas, Nevada, USA. CSREA Press.
- Salton, G. and Buckely, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing and Management, 24(5):513-523.
- Smucker, M. D., Allan, J., and Carterette, B. (2007). A comparison of statistical significance tests for information retrieval evaluation. In Proceedings of the 16th International Conference on Information and Knowledge Management, CIKM 2007, pages 623-632, Lisboa, Portugal. ACM Press,.
- Song, M., Song, I., Hu, X., and Allen, R. B. (2007). Integration of association rules and ontologies for semantic query expansion. Data and Knowledge Engineering, 63(1):63 - 75.
- Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., and Lakhal, L. (2002). Computing Iceberg Concept Lattices with Titanic. Journal on Knowledge and Data Engineering, 2(42):189-222.
- Valarakos, A., Paliouras, G., Karkaletsis, V., and Vouros, G. (2004). A name-matching algorithm for supporting ontology enrichment. In Vouros, G. and Panayiotopoulos, T., editors, Methods and Applications of Artificial Intelligence, volume 3025 of LNCS, pages 381-389. Springer.
- Vallet, D., Fernndez, M., and Castells, P. (2005). An ontology-based information retrieval model. In The Semantic Web: Research and Applications, volume 3532 of LNCS, pages 103-110. Springer.
- Wu, Z. and Palmer, M. (1994). Verb semantics and lexical selection. In Proceedings of the 32nd annual meeting of the Association for Computational Linguistics, pages 133-138, New Mexico, USA.
- Zaki, M. J. (2004). Mining non-redundant association rules. Data Mining and Knowledge Discovery, 9(3):223- 248.
Paper Citation
in Harvard Style
Ben Ghezaiel L., Latiri C. and Ben Ahmed M. (2012). Ontology Enrichment based on Generic Basis of Association Rules for Conceptual Document Indexing . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012) ISBN 978-989-8565-30-3, pages 53-65. DOI: 10.5220/0004131600530065
in Bibtex Style
@conference{keod12,
author={Lamia Ben Ghezaiel and Chiraz Latiri and Mohamed Ben Ahmed},
title={Ontology Enrichment based on Generic Basis of Association Rules for Conceptual Document Indexing},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012)},
year={2012},
pages={53-65},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004131600530065},
isbn={978-989-8565-30-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012)
TI - Ontology Enrichment based on Generic Basis of Association Rules for Conceptual Document Indexing
SN - 978-989-8565-30-3
AU - Ben Ghezaiel L.
AU - Latiri C.
AU - Ben Ahmed M.
PY - 2012
SP - 53
EP - 65
DO - 10.5220/0004131600530065