A Unified Approach for Context-sensitive Recommendations

Mihaela Dinsoreanu, Florin Cristian Macicasan, Octavian Lucian Hasna, Rodica Potolea

2012

Abstract

We propose a model capable of providing context-sensitive content based on the similarity between an analysed context and the recommended content. It relies on the underlying thematic structure of the context by means of lexical and semantic analysis. For the context, we analyse both the static characteristics and dynamic evolution. The model has a high degree of generality by considering the whole range of possible recommendations (content) which best fits the current context. Based on the model, we have implemented a system dedicated to contextual advertisements for which the content is the ad while the context is represented by a web page visited by a given user. The dynamic component refers to the changes of the user’s interest over time. From all the composite criteria the system could accept for assessing the quality of the result, we have considered relevance and diversity. The design of the model and its ensemble underlines our original view on the problem. From the conceptual point of view, the unified thematic model and its category based organization are original concepts together with the implementation.

References

  1. Agrawal, R. & Gollapudi, S., 2009. Diversifying Search Results. Barcelona, WSDM.
  2. Ahmed, A. et al., 2011. Scalable distributed inference of dynamic user interests for behavioral targeting. San Diego, California, USA, ACM, pp. 114-122.
  3. Blei, D. M., 2011. Introduction to probabilistic topic models. Communications of the ACM, December, 54(12), pp. 77-78.
  4. Blei, D. M., Ng, A. Y. & Jordan, M. I., 2003. Latent dirichlet allocation. The Journal of Machine Learning Research, 1 March, Volume 3, pp. 993-1022.
  5. Broder, A. a. F. M. a. J. V. a. R. L., 2007. A semantic approach to contextual advertising. Amsterdam, The Netherlands, ACM, pp. 559-566.
  6. Broder, A. & Josifovki, V., 2011. Introduction to computational advertising (MS&E 239). Stanford(California): Stanford University.
  7. Chakrabarti, D., Agarwal, D. & Josifovski, V., 2008. Contextual advertising by combining relevance with click feedback. Beijing, China, ACM.
  8. Garcia-Molina, H., Koutrika, G. & Parameswaran, A., 2011. Information seek-ing: convergence of search, recommendations and advertising. Communications of the ACM, 54(11), pp. 121-130.
  9. Griffiths, T. L. & Steyvers, M., 2002. A probabilistic approach to semantic representation. Fairfax, Virginia, s.n., pp. 381-386.
  10. Heinrich, G., 2009. Parameter estimation for text analysis, Darmstadt, Germany: Fraunhofer IGD.
  11. Heinrich, G., 2009. Parameter estimation for text analysis, Darmstadt, Germany: Fraunhofer IGD.
  12. Herlocker, J. L., Konstan, J. A., Terveen, L. G. & Riedl, J. T., 2004. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, January, 1(22), pp. 5-53.
  13. Manning, C. D., Raghavan, P. & Schtze, H., 2008. Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press.
  14. Nikulin, M., 2011. Hellinger distance - Encyclopedia of Mathematics. [Online] Available at: http:// www.encyclopediaofmath.org/index.php?title=Helling er_distance&oldid=16453 [Accessed 22 April 2012].
  15. Nikulin, M., 2011. Hellinger distance - Encyclopedia of Mathematics. [Online] Available at: http://www.encyclopediaofmath.org/index.php?title=H ellinger_distance&oldid=16453 [Accessed 22 April 2012].
  16. Phan, X.-H. & Nguyen, C.-T., 2008. JGibbLDA: A Java implementation of latent Dirichlet allocation (LDA). [Online] Available at: http://jgibblda.sourceforge.net/ [Accessed 22 April 2012].
  17. Ribeiro-Neto, B., Cristo, M., Golgher, P. B. & Silva de Moura, E., 2005. Impedance coupling in contenttargeted advertising. Salvador, Brazil, ACM, pp. 496- 503.
  18. Santos, R. L., Macdonald, C. & Ounis, I., 2010. Exploiting query reformulations for web search result diversification. Raleigh, North Carolina, USA, ACM, pp. 881-890.
  19. The Economist, 2010. The data deluge. [Online] Available at: http://www.economist.com/node/15579717 [Accessed 22 April 2012].
  20. Witten, I. H., Frank, E. & Hall, M. A., 2011. Data Mining: Practical Machine Learning Tools and Techniques. 3rd ed. San Francisco(CA): Morgan Kaufmann Publishers Inc..
  21. Yih, W.-t., Goodman, J. & Carvalho, V. R., 2006. Finding advertising keywords on web pages. Edinburgh, Scotland, ACM, pp. 213-222.
  22. Zhang, Y., Surendran, A. C., Platt, J. C. & Narasimhan, M., 2008. Learning from multi-topic web documents for contextual advertisement. Las Vegas, Nevada, USA, ACM, pp. 1051-1059.
  23. Ziegler, C.-N., McNee, S. M., Konstan, J. A. & Lausen, G., 2005. Improving recommendation lists through topic diversification. Chiba, Japan, ACM, pp. 22-32.
Download


Paper Citation


in Harvard Style

Dinsoreanu M., Macicasan F., Hasna O. and Potolea R. (2012). A Unified Approach for Context-sensitive Recommendations . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012) ISBN 978-989-8565-29-7, pages 85-94. DOI: 10.5220/0004141700850094


in Bibtex Style

@conference{kdir12,
author={Mihaela Dinsoreanu and Florin Cristian Macicasan and Octavian Lucian Hasna and Rodica Potolea},
title={A Unified Approach for Context-sensitive Recommendations},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012)},
year={2012},
pages={85-94},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004141700850094},
isbn={978-989-8565-29-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2012)
TI - A Unified Approach for Context-sensitive Recommendations
SN - 978-989-8565-29-7
AU - Dinsoreanu M.
AU - Macicasan F.
AU - Hasna O.
AU - Potolea R.
PY - 2012
SP - 85
EP - 94
DO - 10.5220/0004141700850094