An Ontology-based Framework for Syndromic Surveillance Method Selection
Gabriela Henriques, Deborah Stacey
2012
Abstract
Syndromic surveillance is the detection of a disease outbreak or bioterrorist attack. The process of surveillance includes various steps: data collection, data analysis and result interpretation. The goal of syndromic surveillance is to be able to make a rapid and accurate diagnostic of a potential outbreak. Method types range from traditional statistical approaches to algorithms which have been adapted from other fields. With a variety of options it can be difficult selecting the method best suited for analysis on a given set of data. This paper will focus on developing an ontology-based framework for selecting the best suited method(s) for data analysis, focusing on the end-users perspective.
References
- Buckeridge, D. L., Graham, J. K., O'Connor, M. J., Choy, M. K., Tu, S., and Musen, M. A. (2002). Knowledgebased bioterrorism surveillance. In AMIA Symp, pages 76-80.
- Buckeridge, D. L., Okhmatovskaia, A., Tu, S., O'Connor, M., Nyulas, C., and Musen, M. A. (2008). Understanding detection performance in public health surveillance: Modelling aberrancy-detection algorithms. Journal of the American Medical Informatics Association, 15:760-769.
- Chapman, W. W., Dowling, J. N., Baer, A., Buckeridge, D. L., Cochrane, D., Conway, M. A., Elkin, P., Espino, J., Gunn, J. E., Hales, C. M., Hutwagner, L., Keller, M., Larson, C., Noe, R., Okhmatovskaia, A., Olson, K., Paladini, M., Scholer, M., Sniegoski, C., Thompson, D., and Lober, B. (2010). Developing syndrome definitions based on consensus and current use. Journal of the American Medical Informatics Association, 17:595-601.
- Collier, N., Goodwin, R. M., McCrae, J., Doan, S., Kawazoe, A., Conway, M., Kawtrakul, A., Takeuchi, K., and Dien, D. (2010). An ontology-driven system for detecting global health events. In Proceedings of the 23rd International Conference on Computational Linguistics, COLING 7810, pages 215-222, Stroudsburg, PA, USA. Association for Computational Linguistics.
- Firm, T., Chain, V., and Network, V. (2000). Ten Ways to Leverage Knowledge for Creating Value. Knowledge Creation Diffusion Utilization.
- Guthrie, G., Stacey, D. A., Calvert, D., and Edge, V. (2005). Detection of disease outbreaks in pharmaceutical sales: Neural networks and threshold algorithms. Public Health, pages 3138-3143 ST - Detection of disease outbreaks in.
- Henning, K. (2004). What is syndromic surveillance? MMWR Morbidity and Mortality Weekly Report, 53:5-11.
- Hutwagner, L., Thompson, W., Seeman, G. M., and Treadwell, T. (2003). The bioterrorism preparedness and response early aberration reporting system (EARS). Journal of urban health bulletin of the New York Academy of Medicine, 80:i89-i96.
- Kulldorff, M. (2010). SatScan user guide.
- Kulldorff, M., Heffernan, R., Hartman, J., Assuno, R., and Mostashari, F. (2005). A spacetime permutation scan statistic for disease outbreak detection. PLoS Medicine, 2(3):e59.
- Lu, H.-M., Zeng, D., Trujillo, L., Komatsu, K., and Chen, H. (2008). Ontology-enhanced automatic chief complaint classification for syndromic surveillance. Journal of Biomedical Informatics, 41:340-356.
- McDade, J. and Franz, D. (1998). Bioterrorism as a public health threat. Emerging Infectious Diseases, 4:488- 492.
- Okhmatovskaia, A., Chapman, W., Collier, N., Espino, J., and Buckeridge, D. L. (2009). SSO: The syndromic surveillance ontology. In Proc International Society for Disease Surveillance, page (in press).
- OConnor, M. J., Buckeridge, D. L., Choy, M., Crubezy, M., Pincus, Z., and Musen, M. A. (2003). BioSTORM: A system for automated surveillance of diverse data sources. AMIA Annual Symposium proceedings, 2003:1071.
- Tsui, F.-C., Espino, J. U., Dato, V. M., Gesteland, P. H., Hutman, J., and Wagner, M. M. (2003). Technical description of RODS: a real-time public health surveillance system. Journal of the American Medical Informatics Association, 10:399-408.
- Wong, W.-K., Moore, A., Cooper, G., and Wagner, M. (2005). What's strange about recent events (wsare): An algorithm for the early detection of disease outbreaks. J. Mach. Learn. Res., 6:1961-1998.
Paper Citation
in Harvard Style
Henriques G. and Stacey D. (2012). An Ontology-based Framework for Syndromic Surveillance Method Selection . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012) ISBN 978-989-8565-30-3, pages 396-400. DOI: 10.5220/0004146003960400
in Bibtex Style
@conference{keod12,
author={Gabriela Henriques and Deborah Stacey},
title={An Ontology-based Framework for Syndromic Surveillance Method Selection},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012)},
year={2012},
pages={396-400},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004146003960400},
isbn={978-989-8565-30-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012)
TI - An Ontology-based Framework for Syndromic Surveillance Method Selection
SN - 978-989-8565-30-3
AU - Henriques G.
AU - Stacey D.
PY - 2012
SP - 396
EP - 400
DO - 10.5220/0004146003960400