An Ontology-based Framework for Syndromic Surveillance Method Selection

Gabriela Henriques, Deborah Stacey

2012

Abstract

Syndromic surveillance is the detection of a disease outbreak or bioterrorist attack. The process of surveillance includes various steps: data collection, data analysis and result interpretation. The goal of syndromic surveillance is to be able to make a rapid and accurate diagnostic of a potential outbreak. Method types range from traditional statistical approaches to algorithms which have been adapted from other fields. With a variety of options it can be difficult selecting the method best suited for analysis on a given set of data. This paper will focus on developing an ontology-based framework for selecting the best suited method(s) for data analysis, focusing on the end-users perspective.

References

  1. Buckeridge, D. L., Graham, J. K., O'Connor, M. J., Choy, M. K., Tu, S., and Musen, M. A. (2002). Knowledgebased bioterrorism surveillance. In AMIA Symp, pages 76-80.
  2. Buckeridge, D. L., Okhmatovskaia, A., Tu, S., O'Connor, M., Nyulas, C., and Musen, M. A. (2008). Understanding detection performance in public health surveillance: Modelling aberrancy-detection algorithms. Journal of the American Medical Informatics Association, 15:760-769.
  3. Chapman, W. W., Dowling, J. N., Baer, A., Buckeridge, D. L., Cochrane, D., Conway, M. A., Elkin, P., Espino, J., Gunn, J. E., Hales, C. M., Hutwagner, L., Keller, M., Larson, C., Noe, R., Okhmatovskaia, A., Olson, K., Paladini, M., Scholer, M., Sniegoski, C., Thompson, D., and Lober, B. (2010). Developing syndrome definitions based on consensus and current use. Journal of the American Medical Informatics Association, 17:595-601.
  4. Collier, N., Goodwin, R. M., McCrae, J., Doan, S., Kawazoe, A., Conway, M., Kawtrakul, A., Takeuchi, K., and Dien, D. (2010). An ontology-driven system for detecting global health events. In Proceedings of the 23rd International Conference on Computational Linguistics, COLING 7810, pages 215-222, Stroudsburg, PA, USA. Association for Computational Linguistics.
  5. Firm, T., Chain, V., and Network, V. (2000). Ten Ways to Leverage Knowledge for Creating Value. Knowledge Creation Diffusion Utilization.
  6. Guthrie, G., Stacey, D. A., Calvert, D., and Edge, V. (2005). Detection of disease outbreaks in pharmaceutical sales: Neural networks and threshold algorithms. Public Health, pages 3138-3143 ST - Detection of disease outbreaks in.
  7. Henning, K. (2004). What is syndromic surveillance? MMWR Morbidity and Mortality Weekly Report, 53:5-11.
  8. Hutwagner, L., Thompson, W., Seeman, G. M., and Treadwell, T. (2003). The bioterrorism preparedness and response early aberration reporting system (EARS). Journal of urban health bulletin of the New York Academy of Medicine, 80:i89-i96.
  9. Kulldorff, M. (2010). SatScan user guide.
  10. Kulldorff, M., Heffernan, R., Hartman, J., Assuno, R., and Mostashari, F. (2005). A spacetime permutation scan statistic for disease outbreak detection. PLoS Medicine, 2(3):e59.
  11. Lu, H.-M., Zeng, D., Trujillo, L., Komatsu, K., and Chen, H. (2008). Ontology-enhanced automatic chief complaint classification for syndromic surveillance. Journal of Biomedical Informatics, 41:340-356.
  12. McDade, J. and Franz, D. (1998). Bioterrorism as a public health threat. Emerging Infectious Diseases, 4:488- 492.
  13. Okhmatovskaia, A., Chapman, W., Collier, N., Espino, J., and Buckeridge, D. L. (2009). SSO: The syndromic surveillance ontology. In Proc International Society for Disease Surveillance, page (in press).
  14. OConnor, M. J., Buckeridge, D. L., Choy, M., Crubezy, M., Pincus, Z., and Musen, M. A. (2003). BioSTORM: A system for automated surveillance of diverse data sources. AMIA Annual Symposium proceedings, 2003:1071.
  15. Tsui, F.-C., Espino, J. U., Dato, V. M., Gesteland, P. H., Hutman, J., and Wagner, M. M. (2003). Technical description of RODS: a real-time public health surveillance system. Journal of the American Medical Informatics Association, 10:399-408.
  16. Wong, W.-K., Moore, A., Cooper, G., and Wagner, M. (2005). What's strange about recent events (wsare): An algorithm for the early detection of disease outbreaks. J. Mach. Learn. Res., 6:1961-1998.
Download


Paper Citation


in Harvard Style

Henriques G. and Stacey D. (2012). An Ontology-based Framework for Syndromic Surveillance Method Selection . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012) ISBN 978-989-8565-30-3, pages 396-400. DOI: 10.5220/0004146003960400


in Bibtex Style

@conference{keod12,
author={Gabriela Henriques and Deborah Stacey},
title={An Ontology-based Framework for Syndromic Surveillance Method Selection},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012)},
year={2012},
pages={396-400},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004146003960400},
isbn={978-989-8565-30-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2012)
TI - An Ontology-based Framework for Syndromic Surveillance Method Selection
SN - 978-989-8565-30-3
AU - Henriques G.
AU - Stacey D.
PY - 2012
SP - 396
EP - 400
DO - 10.5220/0004146003960400