Sliding Global Attractors of Neural Learning and Memory

Yoram Baram

2012

Abstract

The highly variable nature of neural firing has been recognized by diverse empirical and analytic findings. Here, the underlying morphology of neural firing is shown to be governed by a bilinear map, prescribing eight types of neuronal global attractors and their points of local bifurcation. While synaptic learning gives rise to irregular firing, membrane memory is shown to guarantee that, under the same external activation, learning and retrieval end at the same global attractor. Forced and spontaneous changes in membrane conductance are shown to cause sliding of the global attractors, switching them from passive to active state and vice versa, and creating secondary firing modes. Selective activation of interacting neurons is shown to create a shunting effect, yielding combinatorial retrieval, concealment and revelation of stored global attractors. The utility of the global attractors is explained not only by their individual dynamic characteristics, but also by their high power of combinatorial expression.

References

  1. Abraham, R. H., Gardini, L. and Mira, C., 1997. Chaos in Discrete Dynamical Systems. Springer- Verlag, Berlin.
  2. Baram, Y., 2012. Noninvertibility, Chaotic coding and chaotic multiplexity in synaptically modulated neural firing. Neural Computation 24(3): 676-699.
  3. Bienenstock, E. L., Cooper, L. N. and Munro, P. W., 1982. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32-48.
  4. Blanchard, P., Devaney, R. L. and Hall, G. R., 2006. Differential Equations. London: Thompson.
  5. Carandini, M . and Ferster, D., 2000. Orientation tuning of membrane potential and firing rate in cat primary visual cortex. J. Neurosci., 20 (1), 470-484.
  6. Connor, J. A. and Stevens, C. F., 1971. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neuron soma. J. Physiol.; 213(1), 31-53.
  7. Castellani, G. C., Intrator, N., Shouval, H., and Cooper, L. N., 1999. Solutions of a BCM learning rule in a network of lateral interacting non-linear neurons Network 10:111-121.
  8. Cooper, L. N., Intrator, N., Blais, B. S. and Shouval, H. Z., 2004. Theory of Cortical Plasticity. New Jersey: World Sciettific.
  9. Dayan, P. and Abbott, L. F., 2001. Theoretical Neuroscience. MIT Press, Cambridge, MA.
  10. Dudai, Y, 1989. Neurobiology of Memory. New York, Oxford University Press.
  11. Gardini, L. and Tramontana, F., 2011. Snap-back repellers in non-smooth functions. Regular and Chaotic Dynamics 2-3: 237-245.
  12. Gerstner, W., 1995. Time structure of the activity in neural network models. Phys.Rev. E 51: 738-758.
  13. Granit, R., D. Kernell, D. and Shortess, G. K., 1963. Quantitative aspects of repetitive firing of mammalian motoneurons caused by injected currents. J. Physiol. 168, 911-931.
  14. Herve, T., Dolmazon, J. M. and Demongeot, J., 1990. Random field and neural information. Proc. Natl. Acad. Sci. USA 87: 806-810, Biophysics.
  15. Hodgkin, A., and Huxley, A., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500-544.
  16. Li, T-Y andYorke, J. A., 1975. Period three implies chaos, Am. Math. Month., 82 (10): 985-992.
  17. Marder, E., Abbott, L., F., Turrigiano, G., G. Liu, Z. and Golowasch, J., 1996. Memory from the dynamics of intrinsic membrane currents. Proc. Nat. Acad. Sci. USA 93: 13481-13486.
  18. Marotto, F. R., 1978. Snap-back repellers imply chaos in Rn. J. Math. Anal. Appl. 63(1): 199-223.
  19. Marotto, F. R., 2005. On redefining a snap-back repeller. Chaos, Solitons & Fractals 25 25-28.
  20. Oja, E., 1982. Simplified neuron model as a principal component analyzer. J. Math. Biol. 15 (3): 267-273.
  21. Ott, E., 1994 Chaos in Dynamical Systems. Cambridge University Press.
  22. Perkel, D. H. and Mulloney B., 1974. Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science, 185, 181- 182.
  23. Sprott, J. C., 2003. Chaos and Time-Series Analysis. New York, Oxford University Press.
  24. Wright, J., 1984. Method for calculating a Lyapunov exponent, Phys. Rev. A, 29(5), 2924-2927.
Download


Paper Citation


in Harvard Style

Baram Y. (2012). Sliding Global Attractors of Neural Learning and Memory . In Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012) ISBN 978-989-8565-33-4, pages 570-575. DOI: 10.5220/0004167705700575


in Bibtex Style

@conference{ncta12,
author={Yoram Baram},
title={Sliding Global Attractors of Neural Learning and Memory},
booktitle={Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012)},
year={2012},
pages={570-575},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004167705700575},
isbn={978-989-8565-33-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012)
TI - Sliding Global Attractors of Neural Learning and Memory
SN - 978-989-8565-33-4
AU - Baram Y.
PY - 2012
SP - 570
EP - 575
DO - 10.5220/0004167705700575