Recurrent Neural Networks - A Natural Model of Computation beyond the Turing Limits

Jérémie Cabessa, Alessandro E. P. Villa

2012

Abstract

According to the Church-Turing Thesis, the classical Turing machine model is capable of capturing all possible aspects of algorithmic computation. However, in neural computation, several basic neural models were proven to be capable of computational capabilities located beyond the Turing limits. In this context, we present an overview of recent results concerning the super-Turing computational power of recurrent neural networks, and show that recurrent neural networks provide a suitable and natural model of computation beyond the Turing limits. We nevertheless don’t draw any hasty conclusion about the controversial issue of a possible predominance of biological intelligence over the potentialities of artificial intelligence.

References

  1. Cabessa, J. (2012). Interactive evolving recurrent neural networks are super-Turing. In Filipe, J. and Fred, A., editors, ICAART 2012: Proceedings of the 4th International Conference on Agents and Artificial Intelligence 2012, volume 1, pages 328-333. SciTePress.
  2. Cabessa, J. and Siegelmann, H. T. (2011). Evolving recurrent neural networks are super-Turing. In IJCNN 2011: Proceedings of the International Joint Conference on Neural Networks 2011, pages 3200-3206. IEEE.
  3. Cabessa, J. and Siegelmann, H. T. (2012). The computational power of interactive recurrent neural networks. Neural Comput., 24(4):996-1019.
  4. Cabessa, J. and Villa, A. E. (2012). The expressive power of analog recurrent neural networks on infinite input streams. Theor. Comput. Sci., 436:23-34.
  5. Copeland, B. J. (2004). Hypercomputation: philosophical issues. Theor. Comput. Sci., 317(1-3):251-267.
  6. Goldin, D., Smolka, S. A., and Wegner, P. (2006). Interactive Computation: The New Paradigm. SpringerVerlag, Secaucus, NJ, USA.
  7. Kaneko, K. and Tsuda, I. (2003). Chaotic itinerancy. Chaos, 13(3):926-936.
  8. Kilian, J. and Siegelmann, H. T. (1996). The dynamic universality of sigmoidal neural networks. Inf. Comput., 128(1):48-56.
  9. Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In Automata Studies, volume 34 of Annals of Mathematics Studies, pages 3-42. Princeton University Press, Princeton, N. J.
  10. McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysic, 5:115-133.
  11. Minsky, M. and Papert, S. (1969). Perceptrons: An Introduction to Computational Geometry. MIT Press.
  12. Minsky, M. L. (1967). Computation: finite and infinite machines. Prentice-Hall, Inc.
  13. Rosenblatt, F. (1957). The perceptron: A perceiving and recognizing automaton. Technical Report 85-460-1, Cornell Aeronautical Laboratory, Ithaca, New York.
  14. Siegelmann, H. T. (1995). Computation beyond the Turing limit. Science, 268(5210):545-548.
  15. Siegelmann, H. T. (2003). Neural and super-Turing computing. Minds Mach., 13(1):103-114.
  16. Siegelmann, H. T. and Sontag, E. D. (1994). Analog computation via neural networks. Theor. Comput. Sci., 131(2):331-360.
  17. Siegelmann, H. T. and Sontag, E. D. (1995). On the computational power of neural nets. J. Comput. Syst. Sci., 50(1):132-150.
  18. Tsuda, I. (1991). Chaotic itinerancy as a dynamical basis of hermeneutics of brain and mind. World Futures, 32:167-185.
  19. Tsuda, I. (2001). Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav. Brain Sci., 24(5):793-847.
  20. Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc., 2(42):230-265.
  21. Van Leeuwen, J. and Wiedermann, J. (2001). Beyond the Turing limit: Evolving interactive systems. In Pacholski, L. and Ruz?icka, P., editors, SOFSEM 2001: Theory and Practice of Informatics, volume 2234 of LNCS, pages 90-109. Springer-Verlag.
  22. Van Leeuwen, J. and Wiedermann, J. (2008). How we think of computing today. In Beckmann, A., Dimitracopoulos, C., and L öwe, B., editors, Logic and Theory of Algorithms, volume 5028 of LNCS, pages 579-593. Springer-Verlag.
  23. Von Neumann, J. (1958). The computer and the brain. Yale University Press, New Haven, CT, USA.
  24. Wegner, P. (1998). Interactive foundations of computing. Theor. Comput. Sci., 192:315-351.
Download


Paper Citation


in Harvard Style

Cabessa J. and E. P. Villa A. (2012). Recurrent Neural Networks - A Natural Model of Computation beyond the Turing Limits . In Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012) ISBN 978-989-8565-33-4, pages 594-599. DOI: 10.5220/0004172905940599


in Bibtex Style

@conference{ncta12,
author={Jérémie Cabessa and Alessandro E. P. Villa},
title={Recurrent Neural Networks - A Natural Model of Computation beyond the Turing Limits},
booktitle={Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012)},
year={2012},
pages={594-599},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004172905940599},
isbn={978-989-8565-33-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012)
TI - Recurrent Neural Networks - A Natural Model of Computation beyond the Turing Limits
SN - 978-989-8565-33-4
AU - Cabessa J.
AU - E. P. Villa A.
PY - 2012
SP - 594
EP - 599
DO - 10.5220/0004172905940599