Soft Control of Swarms - Analytical Approach

Guillaume Sartoretti, Max-Olivier Hongler

2013

Abstract

We analytically study the collective dynamics of mutually interacting heterogeneous agents evolving in a random environment. Our formal framework consists of a collection of N scalar drifted Brownian motions (BM) diffusing on R. The mutual interactions are introduced via a ranked-based, real-time mechanism always endowing the laggard (i.e the agent with the leftmost position) with an extra positive drift. The extra drift generates a net tendency for any agents not to remain the laggard of the society. For well chosen individual and extra laggard’s drifts, the agents organize with time to flock towards a tight and stable travelling spatial pattern. For a population of (N −1) identical agents and an atypical fellow (called hereafter the shill), we are able to analytically discuss the dynamics. In particular we exhibit how a single turbulent shill, stylized here by a ballistic diffusion process, can destroy the cohesion of a swarm. Conversely, we also analytically show how a single shill is able to safely pilot a whole swarm to avoid an obstacle, via interactions with its fellows. A series of simulations experiments comfort our analytic findings.

References

  1. Banner A. D., R. F. and Karatzas, I. (2005). Atlas models of equity markets. Ann. Appl. Prob. 15, 2296-2330.
  2. Bialek W., Cavagna A., G. I. M. T. S. E. M. V. and Walczak, A. M. (2012). Statistical mechanics for natural flocks of birds. PNAS 13, vol. 109, 4786-4791.
  3. Chatterjee, S. and Pal, S. (2010). A phase transition behaviour for brownian motions interacting through their ranks. Prob. Theory Relat. Fields 147, 123-159.
  4. Dosseti, V. (2012). Cohesive motion in one-dimensionnal flocking. Physica A: Math. Theor. 45.
  5. Faria J. J., Dyer J. R. G., . . . and Krause, J. (2010). A novel method for investigating the collective behaviour of fish: Introducing 'robofish'. Behavioral Ecology and Sociobiology 8, vol. 64, 1211-1218.
  6. Gribovskiy A., Halloy J., D. J. L. H. B. and Mondada, F. (2010). Towards mixed societies of chickens and robots. IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, Conference Proceedings pp. 4722-4728.
  7. Han, J. and Wang, L. (2010). New strategy of the shill: Consistent moving. Proceedings of the 29th Chinese Control Conference, pp. 4459-4464.
  8. Hongler M. O., Filliger R., P. B. and Rodriguez, J. (2012). ”Contemporary Topics in Mathematics and Statistics with Applications” in ”On Stochastic Processes Driven By Ballistic Noise Sources”. Ed. M. R. Adhikari.
  9. Hongler M. O., R. F. and Blanchard, P. (2006). Soluble models for dynamics driven by a super-diffusive noise. Physica A 370, 301-355.
  10. Ichiba T., Papathanakos V., B. A. I. K. and Fernhold, R. (2011). Hybrid atlas model. Ann. Appl. Prob. 21(2) 609-644.
  11. Pal, S. and Pitman, J. (2008). One dimensional brownian particles with rank-dependent drifts. Ann. Appl. Prob. 18 2179-2207.
  12. Rogers, L. C. G. and Pitman, J. W. (1981). Markov functions. Ann. of Prob. 9(4), 573-582.
  13. Vaughan R., Sumpter N., H. J. A. F. and Cameron, S. (2000). Experiments in automatic flock control. Robotics and Autonomous Systems 1, vol. 31, 109- 117.
  14. Wang, L. and Guo, L. (2008). Robust consensus and soft control of multi-agent systems with noises. Journal of Systems Science and Complexity 3, vol. 21, 406-415.
  15. Wang X., J. H. and Han, H. (2011). Special agents can promote cooperation in the population. PLoS ONE 12, vol. 6.
  16. Wang Y., X.-Z. M. and Liu, J.-P. (2009). Soft control for swarm systems with simple attraction and repulsion functions. Proceedings of the 2nd International Conference on Intelligent Networks and Intelligent Systems, pp. 482-485.
  17. Yates C. A., Erban R., . . . and Sumpter, D. J. T. (2009). Inherent noise can facilitate coherence in collective swarm motion. PNAS 14, vol. 106, 5464-5469.
Download


Paper Citation


in Harvard Style

Sartoretti G. and Hongler M. (2013). Soft Control of Swarms - Analytical Approach . In Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8565-38-9, pages 147-153. DOI: 10.5220/0004176301470153


in Bibtex Style

@conference{icaart13,
author={Guillaume Sartoretti and Max-Olivier Hongler},
title={Soft Control of Swarms - Analytical Approach},
booktitle={Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2013},
pages={147-153},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004176301470153},
isbn={978-989-8565-38-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - Soft Control of Swarms - Analytical Approach
SN - 978-989-8565-38-9
AU - Sartoretti G.
AU - Hongler M.
PY - 2013
SP - 147
EP - 153
DO - 10.5220/0004176301470153