2D-PAGE Texture Classification using Support Vector Machines and Genetic Algorithms - An Hybrid Approach for Texture Image Analysis

Carlos Fernandez-Lozano, Jose A. Seoane, Pablo Mesejo, Youssef S. G. Nashed, Stefano Cagnoni, Julian Dorado

2013

Abstract

In this paper, a novel texture classification method from two-dimensional electrophoresis gel images is presented. Such a method makes use of textural features that are reduced to a more compact and efficient subset of characteristics by means of a Genetic Algorithm-based feature selection technique. Then, the selected features are used as inputs for a classifier, in this case a Support Vector Machine. The accuracy of the proposed method is around 94%, and has shown to yield statistically better performances than the classification based on the entire feature set. We found that the most decisive and representative features for the textural classification of proteins are those related to the second order co-occurrence matrix. This classification step can be very useful in order to discard over-segmented areas after a protein segmentation or identification process.

References

  1. Bartlett, M. S. (1937). "Properties of Sufficiency and Statistical Tests." Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 160(901): 268-282.
  2. Bonilha, L., E. Kobayashi, et al. (2003). "Texture Analysis of Hippocampal Sclerosis." Epilepsia 44(12): 1546- 1550.
  3. Buciu, I., C. Kotropoulos, et al. (2006). "Demonstrating the stability of support vector machines for classification." Signal Processing 86(9): 2364-2380.
  4. Burges, C. J. C. (1998). "A tutorial on support vector machines for pattern recognition." Data Mining and Knowledge Discovery 2(2): 121-167.
  5. Chang, C. C. and C. J. Lin (2011). "LIBSVM: A Library for support vector machines." ACM Transactions on Intelligent Systems and Technology 2(3).
  6. Chapelle, O., P. Haffner, et al. (1999). "Support vector machines for histogram-based image classification." IEEE Transactions on Neural Networks 10(5): 1055- 1064.
  7. Ferri, C., J. Hernádez-Orallo, et al. (2009). "An experimental comparison of performance measures for classification." Pattern Recognition Letters 30(1): 27- 38.
  8. García, S., A. Fernández, et al. (2009). "A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability." Soft Computing 13(10): 959-977.
  9. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, AddisonWesley Professional.
  10. Hall, M., E. Frank, et al. (2009). "The WEKA data mining software: an update." SIGKDD Explor. Newsl. 11(1): 10-18.
  11. Haralick, R. M., K. Shanmugam, et al. (1973). "Textural features for image classification." IEEE Transactions on Systems, Man and Cybernetics smc 3(6): 610-621.
  12. Harrison, L., P. Dastidar, et al. (2008). "Texture analysis on MRI images of non-Hodgkin lymphoma." Computers in Biology and Medicine 38(4): 519-524.
  13. Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, University of Michigan Press.
  14. Huang, C. L. and C. J. Wang (2006). "A GA-based feature selection and parameters optimizationfor support vector machines." Expert Systems with Applications 31(2): 231-240.
  15. Huang, J. and C. X. Ling (2005). "Using AUC and accuracy in evaluating learning algorithms." IEEE Transactions on Knowledge and Data Engineering 17(3): 299-310.
  16. Hunt, S. M. N., M. R. Thomas, et al. (2005). "Optimal Replication and the Importance of Experimental Design for Gel-Based Quantitative Proteomics." Journal of Proteome Research 4(3): 809-819.
  17. Jain, A. (1997). "Feature selection: evaluation, application, and small sample performance." IEEE Transactions on Pattern Analysis and Machine Intelligence 19(2): 153- 158.
  18. Kim, K. I., K. Jung, et al. (2002). "Support vector machines for texture classification." IEEE Transactions on Pattern Analysis and Machine Intelligence 24(11): 1542-1550.
  19. Kudo, M. and J. Sklansky (1998). "A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers." Kybernetika 34(4): 429-434.
  20. Lemkin, P. F. ”The LECB 2D page gel image data set”, from http://www.ccrnp.ncifcrf.gov/users/lemkin.
  21. Létal, J., D. Jirák, et al. (2003). "MRI 'texture' analysis of MR images of apples during ripening and storage." LWT - Food Science and Technology 36(7): 719-727.
  22. Li, S., J. T. Kwok, et al. (2003). "Texture classification using the support vector machines." Pattern Recognition 36(12): 2883-2893.
  23. Manimala, K., K. Selvi, et al. (2011). "Hybrid soft computing techniques for feature selection and parameter optimization in power quality data mining." Applied Soft Computing Journal 11(8): 5485-5497.
  24. Marten, R. "Marten Lab Proteomics Page." 2012, from http://www.umbc.edu/proteome/image_analysis.html Materka, A. and M. Strzelecki (1998). "Texture analysis methods-A review." Technical University of Lodz, Institute of Electronics. COST B11 report.
  25. Mayerhoefer, M. E., M. J. Breitenseher, et al. (2005). "Texture analysis for tissue discrimination on T1- weighted MR images of the knee joint in a multicenter study: Transferability of texture features and comparison of feature selection methods and classifiers." Journal of Magnetic Resonance Imaging 22(5): 674-680.
  26. Millioni, R., S. Sbrignadello, et al. (2010). "The inter- and intra-operator variability in manual spot segmentation and its effect on spot quantitation in two-dimensional electrophoresis analysis." Electrophoresis 31(10): 1739-1742.
  27. Moulin, L. S., A. P. Alves Da Silva, et al. (2004). "Support vector machines for transient stability analysis of large-scale power systems." IEEE Transactions on Power Systems 19(2): 818-825.
  28. Müller, M., B. Demuth, et al. (2008). An evolutionary approach for learning motion class patterns. 5096 LNCS: 365-374.
  29. Rabilloud, T., M. Chevallet, et al. (2010). "Twodimensional gel electrophoresis in proteomics: Past, present and future." Journal of Proteomics 73(11): 2064-2077.
  30. Rye, M. B. and B. K. Alsberg (2008). "A multivariate spot filtering model for two-dimensional gel electrophoresis." Electrophoresis 29(6): 1369-1381.
  31. Shapiro, S. S. and M. B. Wilk (1965). "An analysis of variance test for normality (complete samples)." Biometrika 52(3-4): 591-611.
  32. Sheskin, D. J. (2011). Handbook of Parametric and Nonparametric Statistical Procedures, Taylor and Francis.
  33. Siedlecki, W. and J. Sklansky (1989). "A note on genetic algorithms for large-scale feature selection." Pattern Recognition Letters 10(5): 335-347.
  34. Szczypinski, P. M., M. Strzelecki, et al. (2007). MaZda - A software for texture analysis.
  35. Szczypiski, P. M., M. Strzelecki, et al. (2009). "MaZda-A software package for image texture analysis." Computer Methods and Programs in Biomedicine 94(1): 66-76.
  36. Szymanski, J. J., J. T. Jamison, et al. (2012). "Texture analysis of poly-adenylated mRNA staining following global brain ischemia and reperfusion." Computer Methods and Programs in Biomedicine 105(1): 81-94.
  37. Tamboli, A. S. and M. A. Shah (2011). A Generic Structure of Object Classification Using Genetic Programming. Communication Systems and Network Technologies (CSNT), 2011 International Conference on.
  38. Tsakanikas, P. and E. S. Manolakos (2009). "Improving 2- DE gel image denoising using contourlets." Proteomics 9(15): 3877-3888.
  39. Tuceryan, M. and A. Jain (1999). Texture analysis. Handbook of pattern recognition and computer vision, World Scientific Publishing Company, Incorporated. 2.
  40. Vapnik, V. N. (1979). Estimation of dependences based on empirical data [in Russian]. Nauka, English translation Springer Verlang, 1982.
  41. Zhang, H., A. C. Berg, et al. (2006). SVM-KNN: Discriminative nearest neighbor classification for visual category recognition.
Download


Paper Citation


in Harvard Style

Fernandez-Lozano C., Seoane J., Mesejo P., S. G. Nashed Y., Cagnoni S. and Dorado J. (2013). 2D-PAGE Texture Classification using Support Vector Machines and Genetic Algorithms - An Hybrid Approach for Texture Image Analysis . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013) ISBN 978-989-8565-35-8, pages 5-14. DOI: 10.5220/0004187400050014


in Bibtex Style

@conference{bioinformatics13,
author={Carlos Fernandez-Lozano and Jose A. Seoane and Pablo Mesejo and Youssef S. G. Nashed and Stefano Cagnoni and Julian Dorado},
title={2D-PAGE Texture Classification using Support Vector Machines and Genetic Algorithms - An Hybrid Approach for Texture Image Analysis},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)},
year={2013},
pages={5-14},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004187400050014},
isbn={978-989-8565-35-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)
TI - 2D-PAGE Texture Classification using Support Vector Machines and Genetic Algorithms - An Hybrid Approach for Texture Image Analysis
SN - 978-989-8565-35-8
AU - Fernandez-Lozano C.
AU - Seoane J.
AU - Mesejo P.
AU - S. G. Nashed Y.
AU - Cagnoni S.
AU - Dorado J.
PY - 2013
SP - 5
EP - 14
DO - 10.5220/0004187400050014