Beat Detection Enhancing using AdaBoost

Jakub Kuzilek, Lenka Lhotska

2013

Abstract

Beat detection is a basic and fundamental step in electrocardiogram (ECG) processing. In many ECG application time is crucial and slow beat detection algorithm may cause serious problems. Beat detection algorithm desired property is to detect sufficiently large number of QRS complexes with small error in shortest time as possible. Our proposed method tries to combine weak and fast QRS detectors such as amplitude threshold based detector in order to obtain better detection result with very low computational increase. We developed a modified version of the well known AdaBoost algorithm for combining weak QRS detectors. Our algorithm has been compared with the performance of our implementation of the Pan-Tompkins’s beat detection algorithm.

References

  1. Chang, P.-C., Hsieh, J.-C., Lin, J.-J., and Yeh, F.-M. (2010). Atrial fibrillation analysis based on blind source separation in 12-lead ecg data. In Zhang, D. and Sonka, M., editors, Medical Biometrics, volume 6165 of Lecture Notes in Computer Science, pages 286-295. Springer Berlin Heidelberg.
  2. Christov, I. (2004). Real time electrocardiogram qrs detection using combined adaptive threshold. BioMedical Engineering OnLine, 3(1):28. M3: 10.1186/1475- 925X-3-28.
  3. Friesen, G., Jannett, T., Jadallah, M., Yates, S., Quint, S., and Nagle, H. (1990). A comparison of the noise sensitivity of nine qrs detection algorithms. Biomedical Engineering, IEEE Transactions on, 37(1):85 -98.
  4. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K., and Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet : Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101(23):e215-220.
  5. Stamkopoulos, T., Diamantaras, K., Maglaveras, N., and Strintzis, M. (1998). Ecg analysis using nonlinear pca neural networks for ischemia detection. Signal Processing, IEEE Transactions on, 46(11):3058 -3067.
Download


Paper Citation


in Harvard Style

Kuzilek J. and Lhotska L. (2013). Beat Detection Enhancing using AdaBoost . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013) ISBN 978-989-8565-36-5, pages 280-283. DOI: 10.5220/0004195202800283


in Bibtex Style

@conference{biosignals13,
author={Jakub Kuzilek and Lenka Lhotska},
title={Beat Detection Enhancing using AdaBoost},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)},
year={2013},
pages={280-283},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004195202800283},
isbn={978-989-8565-36-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)
TI - Beat Detection Enhancing using AdaBoost
SN - 978-989-8565-36-5
AU - Kuzilek J.
AU - Lhotska L.
PY - 2013
SP - 280
EP - 283
DO - 10.5220/0004195202800283