6D Visual Odometry with Dense Probabilistic Egomotion Estimation

Hugo Silva, Alexandre Bernardino, Eduardo Silva

2013

Abstract

We present a novel approach to 6D visual odometry for vehicles with calibrated stereo cameras. A dense probabilistic egomotion (5D) method is combined with robust stereo feature based approaches and Extended Kalman Filtering (EKF) techniques to provide high quality estimates of vehicle’s angular and linear velocities. Experimental results show that the proposed method compares favorably with state-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.

References

  1. Alcantarilla, P., Bergasa, L., and Dellaert, F. (2010). Visual odometry priors for robust EKF-SLAM. In IEEE International Conference on Robotics and Automation,ICRA 2010, pages 3501-3506. IEEE.
  2. Civera, J., Grasa, O., Davison, A., and Montiel, J. (2010). 1- Point RANSAC for EKF filtering. Application to realtime structure from motion and visual odometry. Journal of Field Robotics, 27(5):609-631.
  3. Comport, A., Malis, E., and Rives, P. (2007). Accurate Quadri-focal Tracking for Robust 3D Visual Odometry. In IEEE International Conference on Robotics and Automation, ICRA'07, Rome, Italy.
  4. Domke, J. and Aloimonos, Y. (2006). A Probabilistic Notion of Correspondence and the Epipolar Constraint. In Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06), pages 41-48. IEEE.
  5. Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381-395.
  6. Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edition.
  7. Huang, J., Zhu, T., Pan, X., Qin, L., Peng, X., Xiong, C., and Fang, J. (2011). A high-efficiency digital image correlation method based on a fast recursive scheme. Measurement Science and Technology, 21(3).
  8. Kitt, B., Geiger, A., and Lategahn, H. (2010). Visual odometry based on stereo image sequences with ransacbased outlier rejection scheme. In IEEE Intelligent Vehicles Symposium (IV), 2010, pages 486-492. IEEE.
  9. Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E. (1998). Convergence properties of the neldermead simplex method in low dimensions. SIAM J. on Optimization, 9(1):112-147.
  10. Lowe, D. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  11. Maimone, M. and Matthies, L. (2005). Visual Odometry on the Mars Exploration Rovers. In IEEE International Conference on Systems, Man and Cybernetics, pages 903-910. Ieee.
  12. Moreno, F., Blanco, J., and González, J. (2007). An efficient closed-form solution to probabilistic 6D visual odometry for a stereo camera. In Proceedings of the 9th international conference on Advanced concepts for intelligent vision systems, pages 932-942. SpringerVerlag.
  13. Ni, K., Dellaert, F., and Kaess, M. (2009). Flow separation for fast and robust stereo odometry. In IEEE International Conference on Robotics and Automation ICRA 2009, volume 1, pages 3539-3544.
  14. Nistér, D. (2004). An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell., 26:756-777.
  15. Nistér, D., Naroditsky, O., and Bergen, J. (2006). Visual odometry for ground vehicle applications. Journal of Field Robotics, 23(1):3-20.
  16. Scaramuzza, D. and Fraundorfer, F. (2011). Visual odometry [tutorial]. Robotics Automation Magazine, IEEE, 18(4):80 -92.
  17. Scaramuzza, D., Fraundorfer, F., and Siegwart, R. (2009). Real-time monocular visual odometry for on-road vehicles with 1-point ransac. In Robotics and Automation, 2009. ICRA 7809. IEEE International Conference on, pages 4293 -4299.
  18. Zhang, Z., Deriche, R., Faugeras, O., and Luong, Q.-T. (1995). A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence Special Volume on Computer Vision, 78(2):87 - 119.
Download


Paper Citation


in Harvard Style

Silva H., Bernardino A. and Silva E. (2013). 6D Visual Odometry with Dense Probabilistic Egomotion Estimation . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-48-8, pages 361-365. DOI: 10.5220/0004196103610365


in Bibtex Style

@conference{visapp13,
author={Hugo Silva and Alexandre Bernardino and Eduardo Silva},
title={6D Visual Odometry with Dense Probabilistic Egomotion Estimation},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={361-365},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004196103610365},
isbn={978-989-8565-48-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)
TI - 6D Visual Odometry with Dense Probabilistic Egomotion Estimation
SN - 978-989-8565-48-8
AU - Silva H.
AU - Bernardino A.
AU - Silva E.
PY - 2013
SP - 361
EP - 365
DO - 10.5220/0004196103610365