Face Recognition using Modified Generalized Hough Transform and Gradient Distance Descriptor
Marian Moise, Xue-Dong Yang, Richard Dosselman
2013
Abstract
This research uses a modified version of the generalized Hough transform based on a new image descriptor, known as the gradient distance descriptor, to tackle the problem of face recognition. Thus, in addition to the position of the edges in a sketch of a face, this approach also takes into consideration the value of the corresponding descriptors. Individual descriptors are compared against one another using the matrix cosine similarity measure. This enables the technique to identify the region of a query face image that best matches a target face image in a database. The proposed technique does not require any training data and can be extended to general object recognition.
References
- Anelli, M., Cinque, L., and Sangineto, E. (2007). Deformation tolerant generalized Hough transform for sketchbased image retrieval in complex scenes. Image and Vision Computing, 25(11):1802-1813.
- Ballard, D. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13(2):111- 122.
- Barinova, O., Lempitsky, V., and Kohli, P. (2012). On detection of multiple object instances using Hough transforms. Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 2233-2240.
- Belhumeur, P., Hespanha, J., and Kriegman, D. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(7):711-720.
- Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 8(6):679-698.
- Chen, J., Shan, S., He, C., Zhao, G., Pietikä, M., Chen, X., and Gao, W. (2010). WLD: A robust local image descriptor. IEEE Trans. Pattern Analysis and Machine Intelligence, 32(9):1705-1720.
- Cheng, H., Liu, Z., Zheng, N., and Yang, J. (2008). A deformable local image descriptor. Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 1-8.
- Duda, R., Hart, P., and Stork, D. (2001). Pattern Classification. John Wiley & Sons, 2nd edition.
- Gall, J. and Lempitsky, V. (2009). Class-specific Hough forests for object detection. Proc. IEEE Conf. Computer Vision and Pattern Recognition.
- Gonzalez, R. and Woods, R. (2002). Digital Image Processing. Prentice Hall, 2rd edition.
- Goshtasby, A. (2012). Image Registration: Principles, Tools and Methods. Springer-Verlag.
- Huang, G., Ramesh, M., Berg, T., and Learned-Miller, E. (2007). Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Retrieved November 14, 2012, from http://viswww.cs.umass.edu/lfw/.
- Kumar, N., Berg, A., Belhumeur, P., and Nayar, S. (2009). Attribute and simile classifiers for face verification. Proc. IEEE Int. Conf. Computer Vision, pages 365- 372.
- Li, M.-J. and Dai, R.-W. (1995). A personal handwritten Chinese character recognition algorithm based on the generalized Hough transform. Proc. Int. Conf. Document Analysis and Recognition, 2:828-831.
- Li, Q. and Zhang, B. (2005). Image matching under generalized Hough transform. Proc. IADIS Int. Conf. Applied Computing, pages 45-50.
- Li, S. and Jain, A., editors (2011). Handbook of Face Recognition. Springer-Verlag, 2nd edition.
- Moise, M. (2012). A New Approach to Face Recognition Based on Generalized Hough Transform and Local Image Descriptors. Master's thesis, University of Regina, Regina, Saskatchewan, Canada.
- Schneider, J. and Borlund, P. (2007). Matrix comparison, Part 1: Motivation and important issues for measuring the resemblance between proximity measures or ordination results. Jour. American Society for Information Science and Technology, 58(11):1586-1595.
- Schubert, A. (2000). Detection and tracking of facial features in real time using a synergistic approach of spatio-temporal models and generalized Houghtransform techniques. Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pages 116-121.
- Seo, H. and Milanfar, P. (2009). Nonparametric detection and recognition of visual objects from a single example. Workshop on Defense Applications of Signal Processing.
- Seo, H. and Milanfar, P. (2011). Face verification using the LARK representation. IEEE Trans. Information Forensics and Security, 6(4):1275-1286.
- Seo, H. J. and Milanfar, P. (2010). Training-free, generic object detection using locally adaptive regression kernels. IEEE Trans. Pattern Analysis and Machine Intelligence, 32(9):1688-1704.
- Shechtman, E. and Irani, M. (2007). Matching local selfsimilarities across images and videos. IEEE Conf. Computer Vision and Pattern Recognition, pages 1-8.
- Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. Jour. Cognitive Neuroscience, 3(1):71-86.
- Winkler, S. (2005). Digital Video Quality: Vision Models and Metrics. John Wiley & Sons.
- Yale (1997). Yale Face Database. Retrieved July 4, 2012, from http://cvc.yale.edu/projects/yalefaces/ yalefaces.html.
Paper Citation
in Harvard Style
Moise M., Yang X. and Dosselman R. (2013). Face Recognition using Modified Generalized Hough Transform and Gradient Distance Descriptor . In Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-8565-41-9, pages 5-10. DOI: 10.5220/0004198000050010
in Bibtex Style
@conference{icpram13,
author={Marian Moise and Xue-Dong Yang and Richard Dosselman},
title={Face Recognition using Modified Generalized Hough Transform and Gradient Distance Descriptor},
booktitle={Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2013},
pages={5-10},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004198000050010},
isbn={978-989-8565-41-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Face Recognition using Modified Generalized Hough Transform and Gradient Distance Descriptor
SN - 978-989-8565-41-9
AU - Moise M.
AU - Yang X.
AU - Dosselman R.
PY - 2013
SP - 5
EP - 10
DO - 10.5220/0004198000050010