Linear Subspace Learning based on a Learned Discriminative Dictionary for Sparse Coding

Shibo Gao, Yizhou Yu, Yongmei Cheng

2013

Abstract

Learning linear subspaces for high-dimensional data is an important task in pattern recognition. A modern approach for linear subspace learning decomposes every training image into a more discriminative part (MDP) and a less discriminative part (LDP) via sparse coding before learning the projection matrix. In this paper, we present a new linear subspace learning algorithm through discriminative dictionary learning. Our main contribution is a new objective function and its associated algorithm for learning an overcomplete discriminative dictionary from a set of labeled training examples. We use a Fisher ratio defined over sparse coding coefficients as the objective function. Atoms from the optimized dictionary are used for subsequent image decomposition. We obtain local MDPs and LDPs by dividing images into rectangular blocks, followed by blockwise feature grouping and image decomposition. We learn a global linear projection with higher classification accuracy through the local MDPs and LDPs. Experimental results on benchmark face image databases demonstrate the effectiveness of our method.

References

  1. Belhumeur, P., Hespanha, J. and Kriengman, D. (1997). Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. PAMI, 19 (7): 711-720.
  2. Boureau, Y., Bach, F., LeCun, Y., and Ponce J. (2010). Learning Mid-level Features for Recognition. In CVPR: 2559-2566.
  3. Burachik, R., Kaya, C., and Mammadov, M. (2010). An Inexact Modified Subgradient Algorithm for Nonconvex Optimization. Computational Optimization and Applications, 45(1): 1-24.
  4. Cai, D., He, X., Hu, Y., Han, J., and Huang, T. (2007). Learning a Spatially Smooth Subspace for Face Recognition. In CVPR: 1-7.
  5. Huang, D., Storer, M., Torre, F., and Bischof, H. (2011). Supervised Local Subspace Learning for Continuous Head Pose Estimation. In CVPR: 2921-2928.
  6. Huang, K., Aviyente, S. (2007). Sparse Representation for Signal Classification. In NIPS: 609-616.
  7. Ji, S. Ye, J. (2008). A Unified Framework for Generalized Linear Discriminant Analysis. In CVPR: 1-7.
  8. Jiang, Z., Lin, Z. and Davis, L. (2011). Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In CVPR: 1697-1704.
  9. Kulkarni, N., Li, B. (2011). Discriminative Affine Sparse Codes for Image Classification. In CVPR: 1609-1616.
  10. Lee, H., Battle A., Raina, R., and Ng, A. Y. (2006). Efficient Sparse Coding Algorithms. In NIPS: 801- 808.
  11. Lu, J., and Tan, Y. (2010). Cost-Sensitive Subspace Learning for Face Recognition. In CVPR: 2661-2666.
  12. Lu, J., Plataniotis, K., Venetsanopoulos, A. (2005). Regularization Studies of Linear Discriminant Analysis in Small Sample Size Scenarios with Application to Face Recognition. Pattern Recognition Letters, 26(2): 181-191.
  13. Mairal, J., Bach, F., Ponce, J. (2012). Task-Driven Dictionary Learning. PAMI, 34(4): 791-804.
  14. Mairal, J., Bach, F., Ponce, J., Sapiro, G. and Zisserman A. (2008). Discriminative Learned Dictionaries for Local Image Analysis. In CVPR: 1-8.
  15. Neto, J., Lopes, J., Travaglia, M. (2011). Algorithms for Quasiconvex Minimization. Optimization, 60(8-9): 1105-1117.
  16. Qiao, Z., Zhou, L., Huang, J. Z. (2009). Sparse Linear Discriminant Analysis with Applications to High Dimensional Low Sample Size Data. IAENG International Journal of Applied Mathematics, 39(1): 1-13.
  17. Rodriguez, F., Sapiro, G. (2008). Sparse Representations for Image Classification: Learning Discriminative and Reconstructivenon-Parametric Dictionaries. http://www.ima.umn.edu/preprints/jun2008/2213.pdf.
  18. Sim, T., Baker, S., Bsat, M. (2003). The CMU Pose, Illumination, and Expression Database. PAMI, 25(12): 1615-1618.
  19. Turk, M., and Pentland, A. (1991). Eigenfaces for Recognition. J. Cognitive Neuroscience, 3(1):71-86.
  20. Yang, J., Yu, K., and Huang, T. (2010). Supervised Translation-Invariant Sparse Coding. In CVPR: 3517- 3524.
  21. Yang, M., Zhang, L., Feng, X., Zhang, D. (2011). Fisher Discrimination Dictionary Learning for Sparse Representation. In ICCV, 2011: 543-550.
  22. Zhang, L., Zhu, P., Hu, Q., Zhang, D. (2011). A Linear Subspace Learning Approach via Sparse Coding. In ICCV: 755-761.
  23. Zhang, Q., Li, B. (2010). Discriminative K-SVD for Dictionary Learning in Face Recognition. In CVPR: 2691-2698.
  24. Zheng, W., Lai, J., Yuen, P. (2005). GA-fisher: A New LDA-based Face Recognition Algorithm with Selection of Principal Components. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35(5): 1065-1078.
  25. Zheng, W., Lai, J. H., Yuen, P. C., Li, S. Z. (2009). Perturbation LDA: Learning the Difference between the Class Empirical Mean and Its Expectation. Patten Recognition, 42(5): 764-779.
Download


Paper Citation


in Harvard Style

Gao S., Yu Y. and Cheng Y. (2013). Linear Subspace Learning based on a Learned Discriminative Dictionary for Sparse Coding . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-47-1, pages 530-538. DOI: 10.5220/0004207905300538


in Bibtex Style

@conference{visapp13,
author={Shibo Gao and Yizhou Yu and Yongmei Cheng},
title={Linear Subspace Learning based on a Learned Discriminative Dictionary for Sparse Coding},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={530-538},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004207905300538},
isbn={978-989-8565-47-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)
TI - Linear Subspace Learning based on a Learned Discriminative Dictionary for Sparse Coding
SN - 978-989-8565-47-1
AU - Gao S.
AU - Yu Y.
AU - Cheng Y.
PY - 2013
SP - 530
EP - 538
DO - 10.5220/0004207905300538