Gesture Recognition using Skeleton Data with Weighted Dynamic Time Warping

Sait Celebi, Ali S. Aydin, Talha T. Temiz, Tarik Arici

2013

Abstract

With Microsoft’s launch of Kinect in 2010, and release of Kinect SDK in 2011, numerous applications and research projects exploring new ways in human-computer interaction have been enabled. Gesture recognition is a technology often used in human-computer interaction applications. Dynamic time warping (DTW) is a template matching algorithm and is one of the techniques used in gesture recognition. To recognize a gesture, DTW warps a time sequence of joint positions to reference time sequences and produces a similarity value. However, all body joints are not equally important in computing the similarity of two sequences. We propose a weighted DTW method that weights joints by optimizing a discriminant ratio. Finally, we demonstrate the recognition performance of our proposed weighted DTW with respect to the conventional DTW and state-ofthe-art.

References

  1. Adams, N. H., Bartsch, M. A., Shifrin, J., and Wakefield, G. H. (2004). Time series alignment for music information retrieval. In ISMIR.
  2. Amin, T. B. and Mahmood, I. (2008). Speech Recognition using Dynamic Time Warping. In International Conference on Advances in Space Technologies.
  3. Baum, L. (1972). An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities, 3:1-8.
  4. Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. The Annals of Mathematical Statistics, 41:164-171.
  5. Bellman, R. (1954). The theory of dynamic programming. Bull. Amer. Math. Soc, 60(6):503-515.
  6. D. Gehrig, H. Kuehne, A. W. and Schultz, T. (2009). Hmmbased human motion recognition with optical flow data. In IEEE International Conference on Humanoid Robots (Humanoids 2009), Paris, France.
  7. Kim, S.-J., Magnani, A., and Boyd, S. P. (2005). Robust Fisher Discriminant Analysis. In Neural Information Processing Systems.
  8. Liang, R. and Ouhyoung, M. (1998). A real-time continuous gesture recognition system for sign language. In Automatic Face and Gesture Recognition, 1998. Proceedings. Third IEEE International Conference on, pages 558-567. IEEE.
  9. Myers, C. S. (1980). A Comparative Study of Several Dynamic Time Warping Algorithms for Speech Recognition.
  10. Rath, T. and Manmatha, R. (2003). Word image matching using dynamic time warping. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 2, pages II521 - II-527 vol.2.
  11. Rekha, J., Bhattacharya, J., and Majumder, S. (2011). Shape, texture and local movement hand gesture features for indian sign language recognition. In Trendz in Information Sciences and Computing (TISC), 2011 3rd International Conference on, pages 30 -35.
  12. Reyes, M., Dominguez, G., and Escalera, S. (2011). Feature weighting in dynamic time warping for gesture recognition in depth data. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 1182 -1188.
  13. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. (2011). Real-time human pose recognition in parts from single depth images. In CVPR, volume 2, page 7.
  14. Starner, T. and Pentland, A. (1996). Real-Time American Sign Language Recognition from Video Using Hidden Markov Models. In International Symposium on Computer Vision.
  15. Wenjun, T., Chengdong, W., Shuying, Z., and Li, J. (2010). Dynamic hand gesture recognition using motion trajectories and key frames. In Advanced Computer Control (ICACC), 2010 2nd International Conference on, volume 3, pages 163 -167.
  16. Wikipedia (2012). Dynamic Time Warping. http://en.wikipedia.org/wiki/Dynamic time warping. [Online;accessed 01-August-2008].
  17. Wilson, A. D. and Bobick, A. F. (1999). Parametric Hidden Markov Models for Gesture Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21:884-900.
Download


Paper Citation


in Harvard Style

Celebi S., Temiz T., Aydin A. and Arici T. (2013). Gesture Recognition using Skeleton Data with Weighted Dynamic Time Warping . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-47-1, pages 620-625. DOI: 10.5220/0004217606200625


in Bibtex Style

@conference{visapp13,
author={Sait Celebi and Talha T. Temiz and Ali S. Aydin and Tarik Arici},
title={Gesture Recognition using Skeleton Data with Weighted Dynamic Time Warping},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={620-625},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004217606200625},
isbn={978-989-8565-47-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)
TI - Gesture Recognition using Skeleton Data with Weighted Dynamic Time Warping
SN - 978-989-8565-47-1
AU - Celebi S.
AU - Temiz T.
AU - Aydin A.
AU - Arici T.
PY - 2013
SP - 620
EP - 625
DO - 10.5220/0004217606200625