Predicting Evacuation Capacity for Public Buildings
Pejman Kamkarian, Henry Hexmoor
2013
Abstract
This paper demonstrates a solution for analyzing public space evacuation rates. Evacuating from a public building in a reasonable amount of time is reliant upon how safe the space is in terms of achieving a minimum time to move people outside. In order to increase the safety of evacuation in public spaces, we employed the Bayesian Belief Network method. To have a better estimation pattern, we have to focus on important physical environmental features as well as crowd formation and specifications in a public space.
References
- Barnett, G. O., Famiglietti, K. T., Kim, R. J., Hoffer, E. P., Feldman, M.J., 1998. DXplain on the Internet. In American Medical Informatics Association 1998 Annual Symposium.
- Berler, A., Shimony, S. E., 1997.Bayes Networks for Sonar Sensor Fusion.In Geiger, D, Shenoy, P (eds) 1997.Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence Morgan Kaufmann.
- Cooper, G. F., 1984. NESTOR: A computer-based medical diagnostic aid that integrates causal and probabilistic knowledge.In Ph.D. dissertation.Medical Information Sciences, Stanford University.
- Cooper, G. F., 1987. Probabiistic inference using belief networks is NP-hard.In Technical Report KSL-87-27, Medical Computer Science Group.Stanford University.
- Davies, T. R., Russell, S. J., 1987. A logical approach to reasoning by analogy. In IJCAI 10. pp. 264-270.
- Duda, R. O., Hart, P. E., Nilsson N. J., 1976.Subjective Bayesian methods for rule-based inference systems.In Proceedings of the 1976 National Computer Conference (AFIPS Press). pp. 1075-1082.
- Ezawa, K. J., Schuermann, T., 1995.Fraud/Uncollectible Debt Detection Using a Bayesian Network Based Learning System: A Rare Binary Outcome with Mixed Data Structures. In Besnard, P, Hanks, S (eds) Proceedings of the Eleventh Conference on Uncertainty. in Artificial Intelligence Morgan Kaufmann.
- Frey, B. J., 1998.Graphical Models for Machine Learning and Digital Communication.In MIT Press.
- Good, I.J., 1961-62.A causal calculus (I & II).In British Journal of the Philosophy of Science.pp. 305-318 12: 43-51.
- Helm, L., October 28, 1996.Improbable Inspiration.In Los Angeles Times.
- Howard, R. A., Matheson, J. E., 1984. Influence Diagrams. In Howard, R. A. and Matheson, J. E. (eds.).The Principles and Applications of Decision Analysis, (Strategic Decisions Group, Menlo Park, CA). pp. 721-762.
- Lauritzen, S. L., Spiegelhalter, D. J., 1988. Local computations with probabilities on graphical structures and their application to expert systems. In Journal of the Royal Statistical Society.Vol.50 No. 2 pp.157-224.
- Neil, M., Littlewood, B., Fenton, N., 1996.Applying Bayesian Belief Networks to Systems Dependability Assessment.In Proceedings of Safety Critical Systems Club Symposium, Leeds.6-8 February 1996 SpringerVerlag.
- Pearl, J., 1986. Fusion, propagation and structuring in belief networks. In Artificial Intelligence 29 241-288.
- Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: networks of plausible inference.In Morgan Kaufmann.
- Pires, T. T., 2005. An approach for modeling human cognitive behavior in evacuation models, In Fire Safety Journal, Vol. 40, No. 2, March 2005, Pages 177-189, Elsevier Pub.
- Roozenburg, N. F. M., Eekels, J., 1995. Product Design: Fundamentals and Methods.In Wiley.
- Rousseau, W. F., 1968. A method for computing probabilities. In complex situations, Technical Report 6252-2. Stanford University Center for Systems Research.
- Shachter, R. D., 1986.Intelligence Probabilistic inference.In Kanal, L. N., Lemmer, J. F. (eds.), Uncertainly in Artificial Intelligence (North-Holland, Amsterdam). pp. 371-382.
- Shendarkarb, A., Vasudevana, K., Leea, S., Son, Y., 2008. Crowd simulation for emergency response using BDI agents based on immersive virtual reality, Simulation Modelling Practice and Theory, Vol. 16, No. 9, Pages 1415-1429, Elsevier Pub.
- Still, G. K., 2000. Crowd dynamics, Doctoral dissertation. University of Warwick, U. K.
- Trautman, P., Krause, A., 2010. Unfreezing the Robot: Navigation in Dense, Interacting Crowds, IROS proceedings, pp. 797-803, IEEE press.
- Weiss, S. M., Kulikowski C. A., Amarel S. and Safir A.,1978. A model-based method for computer-aided medical decision making. In Artificial Intelligence.pp. 145-172.
Paper Citation
in Harvard Style
Kamkarian P. and Hexmoor H. (2013). Predicting Evacuation Capacity for Public Buildings . In Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-8565-39-6, pages 433-440. DOI: 10.5220/0004217704330440
in Bibtex Style
@conference{icaart13,
author={Pejman Kamkarian and Henry Hexmoor},
title={Predicting Evacuation Capacity for Public Buildings},
booktitle={Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2013},
pages={433-440},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004217704330440},
isbn={978-989-8565-39-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Predicting Evacuation Capacity for Public Buildings
SN - 978-989-8565-39-6
AU - Kamkarian P.
AU - Hexmoor H.
PY - 2013
SP - 433
EP - 440
DO - 10.5220/0004217704330440