Chaos and Nonlinear Time-series Analysis of Finger Pulse Waves for Depression Detection
Tuan D. Pham, Truong Cong Thang, Mayumi Oyama-Higa, Hoc X. Nguyen, Hameed Saji, Masahide Sugiyama
2013
Abstract
Depressive disorders are mental illnesses that can severely affect one’s health and well-being. If depression is not early detected and left untreated, it can consequently lead to suicide. This paper presents for the first time a novel combination of chaos theory and nonlinear dynamical analysis of signal complexity of photoplethysmography waveforms for detection of depression. Experimental results obtained from the analysis of mentally disordered and control subjects suggest the potential application of the proposed approach.
References
- Allen J., Photoplethysmography and its application in clinical physiological measurement, Physiol. Meas., 28 (2007) R1-R39.
- Abarbanel H.D.I., Analysis of Observed Chaotic Data. New York: Springer-Verlag, 1996.
- Asada HH, et al., Mobile monitoring with wearable photoplethysmographic biosensors, IEEE EMB Magazine 22 (2003) 28-40.
- Chen Y.T., I.C. Hung, M.W. Huang, C.J. Hou, K.S. Cheng, Physiological signal analysis for patients with depression, BMEI 2011, pp. 805-808, 2011.
- Cohn J.F., et al., Detecting depression from facial actions and vocal prosody, 3rd Int. Conf. ACII, pp. 1-7, 2009.
- Dingwell J.B., Lyapunov exponents. Wiley Encyclopedia of Biomedical Engineering, John Wiley & Sons, pp. 1- 12, 2006.
- Higa M., Autonomic nervous balance computation apparatus and method therefor, US Patent US 2011/0313303 A1, 2011.
- Hu YH, W. Wang, T. Suzuki, M. Oyama-Higa, Characteristic extraction of mental disease patients by nonlinear analysis of plethysmograms, CMLS-11, AIP Conf. Proc 1371, pp. 92-101, 2011.
- Kemp A. H., et al., Depression, comorbid anxiety disorders, and heart rate variability in physically healthy, non-medicated patients: implications for cardiovascular risk, PLoS ONE, 7 (2012) e30777.
- Low L. S., N. C. Maddage, M. Lech, L. B. Sheeber, N. B. Allen, Detection of clinical depression in adolescents' speech during family interactions, IEEE Trans Biomed Engineering, 58 (2011) 574-586.
- Marcus M., H. Westra, M. Vermani, M. A. Katzman, Patient predictors of detection of depression and anxiety disorders in primary care, J. Participat Med., 3 (2011) e15.
- Pincus S. M., Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A., 88 (1991) 2297-2301.
- Richman J. S., J. R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy. Amer. J. Physiol. Heart Circ. Physiol., 278 (2000) H2039-H2049.
- Rosenstein M. T., et al., A practical method for calculating largest Lyapunov exponents from small data sets, Physica D: Nonlinear Phenomena, 65 (1993) 117-134.
- Russoniello C. V., et al., A measurement of electrocardiography and photoplethesmography in obese children, Appl Psychophysiol Biofeedback, 35 (2010) 257-259.
- Soennesyn H., et al., White matter hyperintensitives and the course of depressive symptoms in elderly people with mild dementia, Dement Geriatr Cogn Disord Extra, 2 (2012) 97-111.
- Sprott J. L., Chaos and Time-Series Analysis. Oxford, New York, 2003.
- Takens F., Detecting strange attractors in turbulence. In: D. Rand and L.S. Young, eds., Dynamical Systems and Turbulence, Lecture Notes in Mathematics, 898 (1981) 366-381.
- Waza K., A. V. Grahama, S. J. Zyzanskia, K. Inoue, Comparison of symptoms in Japanese and American depressed primary care patients, Family Practice, 16 (1999) 528-533.
- Williams G. P., Chaos Theory Tamed. Joseph Henry Press, Washington D.C., 1997.
- Wilson L., Autonomic nervous system health, Arizona Networking News, http://drlwilson.com/Articles/ NERVOUS%20SYSTEM.htm (2005).
Paper Citation
in Harvard Style
D. Pham T., Cong Thang T., Oyama-Higa M., X. Nguyen H., Saji H. and Sugiyama M. (2013). Chaos and Nonlinear Time-series Analysis of Finger Pulse Waves for Depression Detection . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013) ISBN 978-989-8565-36-5, pages 298-301. DOI: 10.5220/0004222302980301
in Bibtex Style
@conference{biosignals13,
author={Tuan D. Pham and Truong Cong Thang and Mayumi Oyama-Higa and Hoc X. Nguyen and Hameed Saji and Masahide Sugiyama},
title={Chaos and Nonlinear Time-series Analysis of Finger Pulse Waves for Depression Detection},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)},
year={2013},
pages={298-301},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004222302980301},
isbn={978-989-8565-36-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)
TI - Chaos and Nonlinear Time-series Analysis of Finger Pulse Waves for Depression Detection
SN - 978-989-8565-36-5
AU - D. Pham T.
AU - Cong Thang T.
AU - Oyama-Higa M.
AU - X. Nguyen H.
AU - Saji H.
AU - Sugiyama M.
PY - 2013
SP - 298
EP - 301
DO - 10.5220/0004222302980301