Radial Basis Function Neural-fuzzy Model for Microarray Signature Identification
Julio De Alejandro Montalvo, George Panoutsos, Mahdi Mahfouf, James W. Catto
2013
Abstract
This paper introduces a Fuzzy entropy-based method for the problem of feature selection. For the first time Fuzzy-Entropy is used to directly link the relative input relevance of a Radial-Basis-Function Neural-Fuzzy modelling structure. This embedded feature selection method uses the model performance as a criterion for the feature selection. The resulting model maintains its simplicity and transparency in the form of a linguistic Fuzzy-Logic rule-base. The proposed methodology is validated using a real biomedical case-study, which concerns the signature selection for the identification of the stage of bladder cancer. The signature selection and predictive modelling results are compared to previous research work on the same dataset, and it is shown that the RBF-NF model outperforms the previous modelling attempts by achieving high predictive accuracy (>90%). The model is shown to maintain its good performance even when using just 10 genes in the gene based signature.
References
- Al-Sharhan, S., F. Karray, et al. (2001). Fuzzy entropy: A brief survey, Melbourne.
- Braga-Neto, U. M. and E. R. Dougherty (2004). "Is crossvalidation valid for small-sample microarray classification?" BIOINFORMATICS 20(3): 374-380.
- Burke, H. B., P. H. Goodman, et al. (1997). "Artificial neural networks improve the accuracy of cancer survival prediction." Cancer 79(4): 857-862.
- Dunn, J. C. (1973). "A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact WellSeparated Clusters." Cybernetics and Systems 3(3): 32-57.
- Lauss, M., M. Ringnér, et al. (2010). "Prediction of stage, grade, and survival in bladder cancer using genomewide expression data: a validation study." Clinical Cancer Research 16(17): 4421-4433.
- Levenberg, K. (1944). "A method for the solution of certain non-linear problems in least squares." The Quarterly of Applied Mathematics 2(2): 164-168.
- Pal, N. R., K. Aguan, et al. (2007). "Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering." BMC Bioinformatics 8(1): 5-5.
- Panoutsos, G. and M. Mahfouf (2010). "A neural-fuzzy modelling framework based on granular computing: Concepts and applications." Fuzzy Sets and Systems 161(21): 2808-2830.
- Sanchez-Carbayo, M., N. D. Socci, et al. (2006). "Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays." Journal of Clinical Oncology 24(5): 778-789.
- Takagi, T. and M. Sugeno (1985). "Fuzzy identification of systems and its applications to modeling and control." IEEE Transactions on Systems, Man and Cybernetics 15(1): 116-132.
Paper Citation
in Harvard Style
De Alejandro Montalvo J., Panoutsos G., Mahfouf M. and Catto J. (2013). Radial Basis Function Neural-fuzzy Model for Microarray Signature Identification . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013) ISBN 978-989-8565-35-8, pages 134-139. DOI: 10.5220/0004226801340139
in Bibtex Style
@conference{bioinformatics13,
author={Julio De Alejandro Montalvo and George Panoutsos and Mahdi Mahfouf and James W. Catto},
title={Radial Basis Function Neural-fuzzy Model for Microarray Signature Identification},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)},
year={2013},
pages={134-139},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004226801340139},
isbn={978-989-8565-35-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)
TI - Radial Basis Function Neural-fuzzy Model for Microarray Signature Identification
SN - 978-989-8565-35-8
AU - De Alejandro Montalvo J.
AU - Panoutsos G.
AU - Mahfouf M.
AU - Catto J.
PY - 2013
SP - 134
EP - 139
DO - 10.5220/0004226801340139