Hierarchical Design of Continuous Line Illustrations

Fernando J. Wong, Shigeo Takahashi

2013

Abstract

A hierarchical approach for designing continuous line illustrations, drawings that consist of a single line, is presented throughout this paper. Users specify a graph that will guide the overall shape of the line illustration, and proceed to assign a series of child graphs to many of its vertices. A line illustration can then be generated by taking all of these graphs into account, allowing us to produce complex drawings that are composed of several objects. Our approach also allows us to preserve the overall structure and orientation of the line as graphs are inserted or removed from the illustration. We also propose a variety of visual enhancements for our illustrations based on the specified hierarchical graph information and provide several result examples that demonstrate the effectiveness of our approach.

References

  1. Asente, P. J. (2010). Folding avoidance in skeletal strokes. In Proceedings of the Seventh Sketch-Based Interfaces and Modeling Symposium, pages 33-40. Eurographics Association.
  2. Bosch, R. and Herman, A. (2004). Continuous line drawings via the traveling salesman problem. Operations Research Letters, 32(4):302-303.
  3. Catmull, E. and Rom, R. (1974). A class of local interpolating splines. In Computer Aided Geometric Design, pages 317-326.
  4. Everts, M. H., Bekker, H., Roerdink, J. B. T. M., and Isenberg, T. (2009). Depth-dependent halos: Illustrative rendering of dense line data. IEEE Transactions on Visualization and Computer Graphics, 15(6):1299- 1306.
  5. Fleury, M. (1883). Deux problemes de geometrie de situation. Journal de Mathematiques Elementaires, pages 257-261.
  6. Gross, J. L. and Yellen, J. (2005). Graph Theory and Its Applications, Second Edition (Discrete Mathematics and Its Applications). Chapman & Hall/CRC.
  7. Hierholzer, C. and Wiener, C. (1873). Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen, 6(1):30-32.
  8. Hsu, S. C., Lee, I. H. H., and Wiseman, N. E. (1993). Skeletal strokes. In Proceedings of the 6th annual ACM symposium on User interface software and technology, pages 197-206. ACM.
  9. Kaplan, C. S. and Bosch, R. (2005). TSP Art. In Proceedings of Bridges 2005, Mathematical Connections in Art, Music and Science, pages 301-308.
  10. Lindsay, R. A. (2010). Rachel Ann Lindsay - illustrator. http://www.rachelannlindsay.com/.
  11. Lohman, S. (2009). LineArtGallery.com. http://www.lineartgallery.com/.
  12. Maharik, R., Bessmeltsev, M., Sheffer, A., Shamir, A., and Carr, N. (2011). Digital micrography. ACM Transactions on Graphics, 30(4):100:1-100:12.
  13. Morales, J. E. (2005). Virtual Mo. http://www.virtualmo.com/.
  14. Nicolaïdes, K. (1990). The Natural Way to Draw. Houghton Mifflin Company, Boston, Massachusetts, USA.
  15. Pedersen, H. and Singh, K. (2006). Organic labyrinths and mazes. In NPAR 7806: Proceedings of the 4th international symposium on Non-photorealistic animation and rendering, pages 79-86. ACM.
  16. Sable, P. (2009). Single line artwork by Pamela Sable. http://www.pameline.com/.
  17. Slater, G. (2001). Geoff Slater: Contemporary artist. http://www.geoffslater.com/.
  18. Surazhsky, T. and Elber, G. (2000). Arbitrary precise orientation specification for layout of text. In Proceedings of the 8th Pacific Conference on Computer Graphics and Applications, pages 80-86. IEEE Computer Society.
  19. Wong, F. J. and Takahashi, S. (2009). Flow-based automatic generation of hybrid picture mazes. Computer Graphics Forum, 28(7):1975-1984.
  20. Wong, F. J. and Takahashi, S. (2011). A graph-based approach to continuous line illustrations with variable levels of detail. Computer Graphics Forum, 30(7):1931-1939.
Download


Paper Citation


in Harvard Style

J. Wong F. and Takahashi S. (2013). Hierarchical Design of Continuous Line Illustrations . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013) ISBN 978-989-8565-46-4, pages 131-138. DOI: 10.5220/0004232701310138


in Bibtex Style

@conference{grapp13,
author={Fernando J. Wong and Shigeo Takahashi},
title={Hierarchical Design of Continuous Line Illustrations},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013)},
year={2013},
pages={131-138},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004232701310138},
isbn={978-989-8565-46-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013)
TI - Hierarchical Design of Continuous Line Illustrations
SN - 978-989-8565-46-4
AU - J. Wong F.
AU - Takahashi S.
PY - 2013
SP - 131
EP - 138
DO - 10.5220/0004232701310138