Development of Techniques for the Fabrication of Micro- and Nano-batteries for Biomedical Applications

V. S. Sandeep Akkanapragada, Jacob Conner, Hayley Osman, Saibal Mitra

2013

Abstract

Future bio-medical devices with dimensions in the nanoscale region will need independent energy sources to power them. Lithium-ion micro- and nano-batteries are excellent candidates for these power sources. Our proposed nanobattery design ensures that these batteries remain lightweight and safe with fast rechargeable times. We have used femtosecond laser for precision machining. Intense electric fields produced by the laser beam induces electrical breakdown due to avalanche ionization. For femtosecond pulses, this breakdown threshold remains fairly deterministic thereby allowing the use of femtosecond lasers for micro- and nano-machining. The nanobattery consisted of an anode, cathode and separator. The anode was made of graphite or molybdenum oxide while the cathode was made of LiCoO2. The separator was a Kapton membrane with an array of n x n holes micro- or nano-scale holes machined into it which were then filled with Li-based electrolyte. For biomedical applications these batteries must be packaged with bio compatible polymers. Initiated chemical vapor deposition is an attractive technique where polymeric films are deposited by activating a mixture of gas of monomers and initiators. This solventless technique is substrate independent and should lead to the deposition of biocompatible films that can be used to coat and package electronic devices.

References

  1. Baxamusa, S. H.; Im, S. G.; and Gleason, K., 2009. “Initiated and oxidative chemical vapor deposition a scalable method for conformal and functional polymer films on real substrates”, Phys. Chem. Chem. Phys. 11, 5227 - 5240.
  2. Brazier, A.; Dupont L.; Dantras-Laffont L.; Kuwata, N.; Kawamura, J.; Tarascon, J.-M., 2008. “First crosssection observation of an all solid-state lithium-ion “nanobattery” by transmission electron microscopy”, Chem. Mater. 20, 2352-2359.
  3. Dewan, C. and Teeters, D., 2003. “Vanadia xerogel nanocathodes used in lithium microbatteries”, J. Power Sources 119-121, 310-315.
  4. Dudney, N. J., 2000. “Addition of thin-film organic solid electrolytes (Lipon) as protective film in lithium batteries with liquid electrolyte”,“J. Power Sources 89, 176.
  5. Humble, P. H. and Harb, J. N., 2003. “Optimization of Nickel-Zinc microbatteries for hybrid powered microsensor systems”, J. Electrochem. Soc. 150, 1182.
  6. Humble, P. H.; Harb, J. N.; Lafolette, R., 2001. “Microscopic nickel-zinc batteries for use in autonomous microsystems”, J. Electrochem. Soc. 148, 1357.
  7. Jogelkar, A. P.; Liu, H.-H.; Meyhofer, E.; Mourou, G.; and Hunt, A. J., 2004 “Optics at Critical Intensity: Applications to Nanomorphing”, PNAS, 101, 5856- 5861.
  8. Jogelkar, A. P.; Liu, H.-H.; Spooner, G.; Meyhofer, E.; Mourou, G.; and Hunt, A., 2003. J. Appl. Phys. B. 77, 23-30.
  9. Layson, A. L.; Gadad, S.; and Teeters, D., 2003. Electrochim. Acta 48, 2207.
  10. Murthy, S. K.; Olsen, B. D. and Gleason, K. K., 2002. “Initiation of cyclic vinylmethylsiloxane polymerization in a hot-filament chemical vapor deposition process”, Langmuir 18, 6424-6428.
  11. O'Shaughnessy, W. S.; Gao, M. L. and Gleason, K. K., 2006. “Ínitiated chemical vapor deposition of trivilylmethylcyclotrisilozane for biomaterial coatings”, Langmuir, 22, 7021-7026.
  12. Park ,Y. J.; Kim, J. G.; Kim, M. K.; Kim, H. G.; Chung, H. T.; Park, Y., 2000. “ Electrochemical properties of LiMnO thin films: 24 suggestion of factors for excellent rechargeability”, J. Power Sources 87, 69.
  13. Park ,Y. J.; Park, K. S.; Kim, J. G.; Kim, M. K.; Kim, H. G.; Chung, H. T., 2000. “Characterization of tin oxide/LiMn2O4 thin-film cell”, J. Power Sources 88, 250.
  14. Squier, J.; Salin, F.; Mourou, G.; and Her, H. H., 1991. “100-fs Pulse Generation and amplification in Ti:Al2O3”, Opt. Lett. 16, 324-327.
  15. Stephan, A. M. and Teeters, D., 2003. “Characterization of PVdF-HFP polymer electrolytes confined in micor and nanopores”, Electrochim. Acta 48, 2143.
  16. Stuart, B. C.; Feit, M. D.; Herman, S., 1996. “Effect of polarization on ultrashort pulsed laser ablation of thin metal films”, J. Opt. Soc. Am, B 13, 459..
  17. Venkatakrishnan, K.; Tan, B.; Stanley, P.; and Sivakumar, N. R., 2002. “The effect of polarization on ultrashort pulsed laser ablation of thin metal films”, J. Appl. Phys. 92, 1604-1607.
  18. Vorrey, S. and Teeters, D., 2003. “Study of ion conduction of polymer electrolytes confined in micro and nanopores”, Electrochim. Acta 48, 2137.
  19. Zhang, Z.; Dewan C.; Kothari, S; Mitra, S.; Teeters, D., 2004. “Carbon nanotube synthesis, characteristics and microbattery applications”, Mat. Sci. and Engg. B, 116, 293.
Download


Paper Citation


in Harvard Style

Akkanapragada V., Conner J., Osman H. and Mitra S. (2013). Development of Techniques for the Fabrication of Micro- and Nano-batteries for Biomedical Applications . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013) ISBN 978-989-8565-34-1, pages 127-131. DOI: 10.5220/0004234601270131


in Bibtex Style

@conference{biodevices13,
author={V. S. Sandeep Akkanapragada and Jacob Conner and Hayley Osman and Saibal Mitra},
title={Development of Techniques for the Fabrication of Micro- and Nano-batteries for Biomedical Applications},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)},
year={2013},
pages={127-131},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004234601270131},
isbn={978-989-8565-34-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)
TI - Development of Techniques for the Fabrication of Micro- and Nano-batteries for Biomedical Applications
SN - 978-989-8565-34-1
AU - Akkanapragada V.
AU - Conner J.
AU - Osman H.
AU - Mitra S.
PY - 2013
SP - 127
EP - 131
DO - 10.5220/0004234601270131