Constraint-handling for Optimization with Support Vector Surrogate Models - A Novel Decoder Approach

Jörg Bremer, Michael Sonnenschein

2013

Abstract

A new application for support vector machines is their use for meta-modeling feasible regions in constrained optimization problems. We here describe a solution for the still unsolved problem of a standardized integration of such models into (evolutionary) optimization algorithms with the help of a new decoder based approach. This goal is achieved by constructing a mapping function that maps the whole unconstrained domain of a given problem to the region of feasible solutions with the help of the the support vector model. The applicability to real world problems is demonstrated using the load balancing problem from the smart grid domain.

References

  1. Ben-Hur, A., Siegelmann, H. T., Horn, D., and Vapnik, V. (2001). Support vector clustering. Journal of Machine Learning Research, 2:125-137.
  2. Blank, M., Gerwinn, S., Krause, O., and Lehnhoff, S. (2011). Support vector machines for an efficient representation of voltage band constraints. In Innovative Smart Grid Technologies. IEEE PES.
  3. Bremer, J., Rapp, B., and Sonnenschein, M. (2010). Support vector based encoding of distributed energy resources' feasible load spaces. In IEEE PES Conference on Innovative Smart Grid Technologies Europe, Chalmers Lindholmen, Gothenburg, Sweden.
  4. Bremer, J., Rapp, B., and Sonnenschein, M. (2011). Encoding distributed search spaces for virtual power plants. In IEEE Symposium Series in Computational Intelligence 2011 (SSCI 2011), Paris, France.
  5. Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11-12):1245-1287.
  6. Guan, X., Zhai, Q., and Papalexopoulos, A. (2003). Optimization based methods for unit commitment: Lagrangian relaxation versus general mixed integer programming. volume 2, page 1100 Vol. 2.
  7. Hansen, N. (2006). The CMA evolution strategy: a comparing review. In Lozano, J., Larranaga, P., Inza, I., and Bengoetxea, E., editors, Towards a new evolutionary computation. Advances on estimation of distribution algorithms, pages 75-102. Springer.
  8. Himmelblau, D. (1972). Applied nonlinear programming. McGraw-Hill.
  9. Juszczak, P., Tax, D., and Duin, R. P. W. (2002). Feature scaling in support vector data description. In Deprettere, E., Belloum, A., Heijnsdijk, J., and van der Stappen, F., editors, Proc. ASCI 2002, 8th Annual Conf. of the Advanced School for Computing and Imaging, pages 95-102.
  10. Kamper, A. and Esser, A. (2009). Strategies for decentralised balancing power. In A. Lewis, S. Mostaghim, M. R., editor, Biologically-inspired Optimisation Methods: Parallel Algorithms, Systems and Applications, number 210 in Studies in Computational Intelligence, pages 261-289. Springer, Berlin, Heidelberg.
  11. Karaboga, D. and Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3):459-471.
  12. Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE International Conference on, volume 4, pages 1942-1948 vol.4. IEEE.
  13. Kim, D. G. (1998). Riemann mapping based constraint handling for evolutionary search. In SAC, pages 379-385.
  14. Kok, K., Derzsi, Z., Gordijn, J., Hommelberg, M., Warmer, C., Kamphuis, R., and Akkermans, H. (2008). Agentbased electricity balancing with distributed energy resources, a multiperspective case study. Hawaii International Conference on System Sciences, 0:173.
  15. Koziel, S. and Michalewicz, Z. (1999). Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol. Comput., 7:19-44.
  16. Kramer, O. (2010). A review of constraint-handling techniques for evolution strategies. Appl. Comp. Intell. Soft Comput., 2010:3:1-3:19.
  17. Kwok, J. and Tsang, I. (2004). The pre-image problem in kernel methods. Neural Networks, IEEE Transactions on, 15(6):1517-1525.
  18. Liepins, G. E. and Vose, M. D. (1990). Representational issues in genetic optimization. Journal of Experimental and Theoretical Artificial Intelligence, 2.
  19. Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs (3rd ed.). Springer-Verlag, London, UK.
  20. Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput., 4:1-32.
  21. Mihailescu, R.-C., Vasirani, M., and Ossowski, S. (2011). Dynamic coalition adaptation for efficient agent-based virtual power plants. In Proceedings of the 9th German conference on Multiagent system technologies, MATES'11, pages 101-112, Berlin, Heidelberg. Springer-Verlag.
  22. Mika, S., Schölkopf, B., Smola, A., Müller, K. R., Scholz, M., and Rätsch, G. (1999). Kernel PCA and denoising in feature spaces. In Proceedings of the 1998 conference on Advances in neural information processing systems II, pages 536-542, Cambridge, MA, USA. MIT Press.
  23. Pereira, J., Viana, A., Lucus, B., and Matos, M. (2008). A meta-heuristic approach to the unit commitment problem under network constraints. International Journal of Energy Sector Management, 2(3):449-467.
  24. Ramchurn, S. D., Vytelingum, P., Rogers, A., and Jennings, N. R. (2011). Agent-based control for decentralised demand side management in the smart grid. In AAMAS, pages 5-12.
  25. Richardson, J. T., Palmer, M. R., Liepins, G. E., and Hilliard, M. R. (1989). Some guidelines for genetic algorithms with penalty functions. In Proceedings of the 3rd International Conference on Genetic Algorithms, pages 191-197, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
  26. Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K.- R., Rätsch, G., and Smola, A. (1999). Input space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5):1000-1017.
  27. Tax, D. M. J. and Duin, R. P. W. (1999). Data domain description using support vectors. In ESANN, pages 251-256.
  28. Thomas, B. (2007). Mini-Blockheizkraftwerke: Grundlagen, Gerätetechnik, Betriebsdaten. Vogel Buchverlag.
  29. Tröschel, M. and Appelrath, H.-J. (2009). Towards reactive scheduling for large-scale virtual power plants. In Braubach, L., van der Hoek, W., Petta, P., and Pokahr, A., editors, MATES, volume 5774 of Lecture Notes in Computer Science, pages 141-152. Springer.
Download


Paper Citation


in Harvard Style

Bremer J. and Sonnenschein M. (2013). Constraint-handling for Optimization with Support Vector Surrogate Models - A Novel Decoder Approach . In Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-8565-39-6, pages 91-100. DOI: 10.5220/0004241100910100


in Bibtex Style

@conference{icaart13,
author={Jörg Bremer and Michael Sonnenschein},
title={Constraint-handling for Optimization with Support Vector Surrogate Models - A Novel Decoder Approach},
booktitle={Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2013},
pages={91-100},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004241100910100},
isbn={978-989-8565-39-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Constraint-handling for Optimization with Support Vector Surrogate Models - A Novel Decoder Approach
SN - 978-989-8565-39-6
AU - Bremer J.
AU - Sonnenschein M.
PY - 2013
SP - 91
EP - 100
DO - 10.5220/0004241100910100