Regularized Least Squares Applied to Heartbeat Classification using Transform-based and RR Intervals Features
Hamza Baali, Rini Akmeliawati, Momoh J. E. Salami
2013
Abstract
An algorithm for arrhythmia classification is presented with emphasis on the discrimination between normal and premature ventricular contraction (PVC) conditions. We derived new features from the transformed ECG signal resulting from the linear predictive analysis of the ECG heartbeats and from the LPC filter impulse response matrix. These features in conjunction with the residual error energy and RR-intervals are fed into the Regularized Least Squares Classifier (RLSC) with radial basis kernel. The proposed features show an acceptable separation capability between the two classes. Two scenarios are investigated using selected records taken from the MIT-Arrhythmia database namely, intra-patient and inter-patient classification. The achieved results are 98.18 sensitivity and 99.02 specificity in average for the first scenario (intra-patient) and 95.18 sensitivity and 96.92 specificity in average for the second scenario (inter-patient).
References
- Osowski, S., Linh, T. L., 2001. ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng. 48 (11), 1265-1271.
- De Chazal, P., Reilly, R. B.,2006. A Patient-Adapting Heartbeat Classifier Using ECG Morphology and Heartbeat Interval Features. IEEE Trans. Biomed. Eng. 53 (12), 2535-2543.
- Hu,Y. H., Palreddy, S., Tompkins, W. J .,1997. A patientadaptable ECG beat classifier using a mixture of experts approach. IEEE Trans. Biomed. Eng. 44 (9), 891-900.
- Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sornmo,L.,2000. Clustering ECG complexes using hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47 (7), 338-348.
- Sigg, D. C., Iaizzo, P. A., Xiao, Y F, He, B.,2010. Cardiac Electrophysiology Methods and Models.: Springer.
- Ge D., Srinivasan, N., Krishnan,S M.,2002. Cardiac arrhythmia classification using autoregressive modeling. Biomed Eng Online. 1 (5), 1-12.
- Ham, F. M., Han, S.,1996. Classification of cardiac arrhythmias using fuzzy ARTMAP. IEEE Trans. Biomed. Eng. 43 (4), 425-430.
- Lin, K. P., Chang, W. H.,1989. QRS feature extraction using linear prediction. IEEE Trans. Biomed. Eng. 35 (10), 1050-055.
- De Chazal, P., O'Dwyer, M., Reilly, R .,2004. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51 (7), 1196-1206.
- Lannoy, G. D., François, D., Delbeke, J.,Verleysen, M., 2011. Weighted SVMs and Feature Relevance Assessment in Supervised Heart Beat Classification. Commun. Comput. Inf. Sci. 127, 212- 223.
- Clifford, G D., Azuaje, F., McSharry, P., 2006. Advanced Methods And Tools for ECG Data Analysis: Artech House, Inc., Norwood.
- Makhoul, J.,1975. Linear prediction: A tutorial review. Proceedings of the IEEE. 63 (4), 561-580 .
- Mark, R., Moody,G. (1997). MIT-BIHArrhythmia Database. Available: http://ecg.mit.edu/dbinfo.html. Last accessed june 2012.
- Atal,B .,1989. A model of LPC excitation in terms of eigenvectors of the autocorrelation of the impulse response of the LPC filter. ICASSP. 1, 45-48.
- Baali, H., Salami, M. J. E ., Akmeliawati, R., Aibinu, A M . (2011). Analysis of the ECG Signal using SVDBased Parametric Modelling Technique. International Symposium on Electronic Design, Test and Application ., 180-184.
- Baali, H., Akmeliawati, R., Salami, M. J. E., Aibinu, M. A., Gani A. (2011). Transform Based Approach for ECG Period Normalization. Computing in Cardiology. 38, 533-536.
- Rifkin R. M.,2002. Everything Old Is New Again: A Fresh Look at Historical Approaches to Machine Learning. Phd Thesis, Massachusetts Institute of Technology.
- Rifkin, R. M., Lippert, R. A. 2007. Notes on Regularized Least Squares.Computer Science and Artificial Intelligence Laboratory Technical Report. 1-8.
- Bortolan, G., Jekova , I., Christov, I., 2005. Comparison of Four Methods for Premature Ventricular Contraction and Normal Beat Clustering.Computing in Cardiology. 31, 921-924.
- Mai,V., Khalil, I.,2011. A Cardioid Based Technique to Identify Premature Ventricular Contractions. Computing in Cardiology. 38 , 673-676.
- Shyu, L. Y., Wu, Y. H ., Hu, W.,2004. Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans. Biomed. Eng. 51 (7), 1269-1273.
Paper Citation
in Harvard Style
Baali H., Akmeliawati R. and J. E. Salami M. (2013). Regularized Least Squares Applied to Heartbeat Classification using Transform-based and RR Intervals Features . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013) ISBN 978-989-8565-35-8, pages 164-170. DOI: 10.5220/0004242101640170
in Bibtex Style
@conference{bioinformatics13,
author={Hamza Baali and Rini Akmeliawati and Momoh J. E. Salami},
title={Regularized Least Squares Applied to Heartbeat Classification using Transform-based and RR Intervals Features},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)},
year={2013},
pages={164-170},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004242101640170},
isbn={978-989-8565-35-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)
TI - Regularized Least Squares Applied to Heartbeat Classification using Transform-based and RR Intervals Features
SN - 978-989-8565-35-8
AU - Baali H.
AU - Akmeliawati R.
AU - J. E. Salami M.
PY - 2013
SP - 164
EP - 170
DO - 10.5220/0004242101640170