Classification of HEp-2 Staining Patterns in ImmunoFluorescence Images - Comparison of Support Vector Machines and Subclass Discriminant Analysis Strategies

Ihtesham Ul Islam, Santa Di Cataldo, Andrea Bottino, Elisa Ficarra, Enrico Macii

2013

Abstract

Anti-nuclear antibodies test is based on the visual evaluation of the intensity and staining pattern in HEp-2 cell slides by means of indirect immunofluorescence (IIF) imaging, revealing the presence of autoantibodies responsible for important immune pathologies. In particular, the categorization of the staining pattern is crucial for differential diagnosis, because it provides information about autoantibodies type. Their manual classification is very time-consuming and not very reliable, since it depends on the subjectivity and on the experience of the specialist. This motivates the growing demand for computer-aided solutions able to perform staining pattern classification in a fully automated way. In this work we compare two classification techniques, based respectively on Support Vector Machines and Subclass Discriminant Analysis. A set of textural features characterizing the available samples are first extracted. Then, a feature selection scheme is applied in order to produce different datasets, containing a limited number of image attributes that are best suited to the classification purpose. Experiments on IIF images showed that our computer-aided method is able to identify staining patterns with an average accuracy of about 91% and demonstrate, in this specific problem, a better performance of Subclass Discriminant Analysis with respect to Support Vector Machines.

References

  1. Ahmed, N. and Natarajan, T. and Rao, K. R. Discrete Cosine Transform. IEEE Trans. Computers, 90-93, 1974.
  2. Belhumeur, P. N. and Hespanha, J. P. and Kriegman, D. J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711- 720, July 1997.
  3. Boulgouris, N. V. and Plataniotis, K. N. and MicheliTzanakou, E. Discriminant Analysis for Dimensionality Reduction: An Overview of Recent Developments. In Biometrics: Theory, Methods, and Applications, Wiley, 2009
  4. Chang , C.-C. and Lin, C.-J. Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2(3):27:1-27:27, May 2011.
  5. Clausi, D. A., An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sensing 28(1):45-62, 2002.
  6. Creemers, C. and Guerti, K. and Geerts, S. and Van Cotthem, K. and Ledda, A. and Spruyt, V. HEp-2 cell pattern segmentation for the support of autoimmune disease diagnosis. ISABEL 2011, Proc. of, 28:1-5, 2011.
  7. Di Cataldo, S. and Bottino, A. and Ficarra, E. and Macii, E. Applying Textural Features to the Classification of HEp-2 Cell Patterns in IIF images. 21st International Conference on Pattern Recognition (ICPR 2012), Tsukuba, Japan, November 11-15, 2012.
  8. Egerer, K. and Roggenbuck, D. and Hiemann, R. and Weyer, M. G. and Buttner, T. and Radau, B. and Krause, R. and Lehmann, B. and Feist, E. and Burmester, G. R. Automated evaluation of autoantibodies on human epithelial-2 cells as an approach to standardize cell-based immunofluorescence tests. Arthritis Research & Therapy, 12(2):1-9, 2010
  9. Etemad, K. and Chellapa, R. Discriminant Analysis for Recognition of Human Face Images. J. Optical Soc. Am. A, vol. 14, no. 8, pp. 1724-1733, 1997.
  10. Fukunaga, K. Introduction to Statistical Pattern Recognition. second ed. Academic Press, 1990.
  11. Gkalelis, N. and Mezaris, V. and Kompatsiaris, I. Mixture subclass discriminant analysis IEEE Signal Processing Letters, vol. 18, no. 5, pp. 319-322, May 2011.
  12. Haralick, R. M. and Shanmugam, K. and Dinstein, I.. Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, 3(6):610- 621, nov. 1973.
  13. Hsieh, R. Y. and Huang, Y. C. and Chung, C. W. and Huang, Y. L. HEp-2 Cell Classification in Indirect Immunofuorescence Images. ICICS 2009, Proc. of, 26:211- 214, 2009.
  14. Kurgan, L. A. and Cios, K. J. Caim discretization algorithm. IEEE Trans. on Knowl. and Data Eng., 16(2):145- 153, Feb. 2004.
  15. Martinez, A. M. and Zhu, M. Where Are Linear Feature Extraction Methods Applicable? IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 12, pp. 1934-1944, Dec. 2005.
  16. MIVIA Lab, http://nerone.diiie.unisa.it/zope/mivia/databas es/db database/biomedical/ last accessed: September 2012.
  17. Peng, H. and Long, F. and Ding, C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans PAMI, 27:1226-1238, 2005.
  18. Perner, P. and Perner, H. and Muller, B. Mining knowledge for HEp-2 cell image classification. Artificial Intelligence in Medicine, 26:161 -173, 2002.
  19. Sack, U. and Knoechner, S. and Warschkau, H. and Pigla, U. and Emmrich, F. and Kamprad, M. Computerassisted classification of hep-2 immunofluorescence patterns in autoimmune diagnostics. Autoimmunity Reviews, 2(5):298304, 2003.
  20. Kim, S.-W. A pre-clustering technique for optimizing subclass discriminant analysis, Pattern Recognition Letters, Volume 31, Issue 6, pp. 462-468, 2010
  21. Soda, P. and Iannello, G. A Hybrid Multi-Expert Systems for HEp-2 Staining Pattern Classification. ICIAP 2007, Proc. of, 685-690, 2007.
  22. Soh, L. and Tsatsoulis, C. Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence Matrices IEEE Transactions on Geoscience and Remote Sensing, 37(2), 1999.
  23. Sorwar, G. and Abraham, A. and Dooley, L. S. Texture Classification Based on DCT and Soft Computing. FUZZ-IEEE01, Proc. of, 2-5 Dec 2001, 2001. 2011.
  24. Swets, D. L. and Weng, J. J. Using Discriminant Eigenfeatures for Image Retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp. 831- 836, Aug. 1996.
  25. Temko, A. and Camprubi, C. N. Classication of acoustic events using SVM-based clustering schemes. Pattern Recognition, 39(4): 682-694, 2006.
  26. Tozzoli, R. and Bizzaro, N. and Tonutti, E. and Villalta, D. and Bassetti, D. and Manoni, F. and Piazza, A. and Pradella, M. and Rizzotti, P. Guidelines for the laboratory use of autoantibody tests in the diagnosis and monitoring of autoimmune rheumatic diseases. Am J Clin Pathol, 117(2): 316-24, 2002.
  27. Ververidis, D. and Kotropoulos, C. Fast and accurate feature subset selection applied into speech emotion recognition. Els. Signal Process., 88(12): 2956-2970, 2008.
  28. Weston, J. and Mukherjee, S. and Chapelle, O. and Pontil, M. and Poggio, T. and Vapnik, V. Feature selection for SVMs. Advances in Neural Information Processing Systems 13, 668-674, 2000.
  29. Zhu, M. and Martinez, A. M. Subclass Discriminant Analysis. IEEE Trans PAMI, 28(8): 1274-1286, 2006.
Download


Paper Citation


in Harvard Style

Ul Islam I., Di Cataldo S., Bottino A., Ficarra E. and Macii E. (2013). Classification of HEp-2 Staining Patterns in ImmunoFluorescence Images - Comparison of Support Vector Machines and Subclass Discriminant Analysis Strategies . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013) ISBN 978-989-8565-35-8, pages 53-61. DOI: 10.5220/0004244100530061


in Bibtex Style

@conference{bioinformatics13,
author={Ihtesham Ul Islam and Santa Di Cataldo and Andrea Bottino and Elisa Ficarra and Enrico Macii},
title={Classification of HEp-2 Staining Patterns in ImmunoFluorescence Images - Comparison of Support Vector Machines and Subclass Discriminant Analysis Strategies},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)},
year={2013},
pages={53-61},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004244100530061},
isbn={978-989-8565-35-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)
TI - Classification of HEp-2 Staining Patterns in ImmunoFluorescence Images - Comparison of Support Vector Machines and Subclass Discriminant Analysis Strategies
SN - 978-989-8565-35-8
AU - Ul Islam I.
AU - Di Cataldo S.
AU - Bottino A.
AU - Ficarra E.
AU - Macii E.
PY - 2013
SP - 53
EP - 61
DO - 10.5220/0004244100530061