GMM-based Classifiers for the Automatic Detection of Obstructive Sleep Apnea
J.-A. Gómez-García, J.-L. Blanco-Murillo, J.-I. Godino-Llorente, L. A. Hernández Gómez, G. Castellanos-Domínguez
2013
Abstract
The aim of automatic pathological voice detection systems is to support a more objective, less invasive diagnosis of diseases. Those detection systems mostly employ an optimized representation of the spectral envelope; whereas for classification, Gaussian Mixture Models are typically used. However, the study of Gaussian Mixture Models-based classifiers as well as Nuisance mitigation techniques, such as those employed in speaker recognition, has not been widely considered in pathology detection tasks. The present work aims at considering whether such tools might improve system performance in detection of pathologies, particularly for the Obstructive Sleep Apnea. Having this in mind, the present paper employs Linear Prediction Coding Coefficients, in conjunction with Gaussian Mixture Model-based classifiers for the detection of Obstructive Sleep Apnea, in a database containing the sustained phonation of vowel /a/. The obtained results demonstrate subtle improvements compared to using baseline automatic detection system.
References
- Alcázar, J., Fernández, R., Blanco, J., Hernández, L., López, L., Linde, F., and Torre-Toledano, D. (2009). Automatic speaker recognition techniques: A new tool for sleep apnoea diagnosis. Am. J. Respir. Crit. Care Med.
- Blanco-Murillo, J., Hernández, L., Fernández, R., and Ramos, D. (2011a). Introducing non-linear analysis into sustained speech characterization to improve sleep apnea detection. Advances in Nonlinear Speech Processing, pages 215-223.
- Blanco-Murillo, J. L., Fernández-Pozo, R., Torre-Toledano, D., Caminero, J., and López, E. (2011b). Analyzing training dependencies and posterior fusion in discriminant classification of apnea patients based on sustained and connected speech. In INTERSPEECH, pages 3033-3036.
- Campbell, W., Campbell, J., Reynolds, D. A., Singer, E., and Torrescarrasquillo, P. (2006). Support vector machines for speaker and language recognition. Computer Speech & Language, 20(2-3):210-229.
- Elisha, O., Tarasiuk, A., and Zigel, Y. (2011). Detection of obstructive sleep apnea using speech signal analysis. In MAVEBA.
- Fernández-Pozo, R., Blanco-Murillo, J. L., HernándezGómez, L., López-Gonzalo, E., Alcázar Ramírez, J., and Toledano, D. T. (2009). Assessment of severe apnoea through voice analysis, automatic speech, and speaker recognition techniques. EURASIP J. Adv. Signal Process, 2009:6:1-6:11.
- Fox, A. W., Monoson, P. K., and Morgan, C. D. (1989). Speech dysfunction of obstructive sleep apnea. a discriminant analysis of its descriptors. Chest, 96(3):589-95.
- Kinnunen, T. and Li, H. (2009). An Overview of TextIndependent Speaker Recognition: from Features to Supervectors. Image Processing.
- Puertas, F. J., Pin, G., María, J. M., and Durán, J. (2005). Documento de consenso nacional sobre el síndrome de apneas-hipopneas del suen˜o. Grupo Espan˜ol De Suen˜o.
- Wang, X., Zhang, J., and Yan, Y. (2011). Discrimination between pathological and normal voices using GMMSVM approach. Journal of voice, 25(1):38-43.
Paper Citation
in Harvard Style
Gómez-García J., Blanco-Murillo J., Godino-Llorente J., A. Hernández Gómez L. and Castellanos-Domínguez G. (2013). GMM-based Classifiers for the Automatic Detection of Obstructive Sleep Apnea . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013) ISBN 978-989-8565-36-5, pages 364-367. DOI: 10.5220/0004252503640367
in Bibtex Style
@conference{biosignals13,
author={J.-A. Gómez-García and J.-L. Blanco-Murillo and J.-I. Godino-Llorente and L. A. Hernández Gómez and G. Castellanos-Domínguez},
title={GMM-based Classifiers for the Automatic Detection of Obstructive Sleep Apnea},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)},
year={2013},
pages={364-367},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004252503640367},
isbn={978-989-8565-36-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2013)
TI - GMM-based Classifiers for the Automatic Detection of Obstructive Sleep Apnea
SN - 978-989-8565-36-5
AU - Gómez-García J.
AU - Blanco-Murillo J.
AU - Godino-Llorente J.
AU - A. Hernández Gómez L.
AU - Castellanos-Domínguez G.
PY - 2013
SP - 364
EP - 367
DO - 10.5220/0004252503640367