Telecommunications Customers Churn Monitoring using Flow Maps and Cartogram Visualization

David L. García, Àngela Nebot, Alfredo Vellido

2013

Abstract

Telecommunication companies compete in increasingly aggressive markets. Avoiding customer defection, or churn, should be at the core of successful management in such context. These companies store and manage abundant customer usage data. Their analysis using advanced techniques can be a source of valuable insight into customers’ behavior over time. Exploratory data visualization can help in this task. Many important contributions to multivariate data visualization using nonlinear techniques have recently been made. In this paper, we analyze a database of customer landline telephone usage in Brazil. These data are first visualized using a nonlinear manifold learning model, Generative Topographic Mapping (GTM). This visualization is enhanced using a cartogram technique, inspired in geographical representation methods, that reintroduces the local nonlinear distortion into the representation space. Yet another geographical information visualization technique, namely the Flow Maps, is then used to visualize customer migrations over time periods in the GTM data representation space. The experimental results shown in this paper provide evidence to support that the use of these methods can assist experts in the process of useful knowledge extraction, with an impact on customer retention management strategies.

References

  1. Bishop, C. M. (1998). Latent variable models, pages 371- 404. Learning in Graphical Models. M.I.T. Press.
  2. Bishop, C. M., Svensén, M., and Williams, C. K. I. (1997). Magnification factors for the GTM algorithm. In IEE Fifth International Conference on Artificial Neural Networks, pages 64-69. IEE.
  3. Bishop, C. M., Svensén, M., and Williams, C. K. I. (1998). GTM: The Generative Topographic Mapping. Neural Computation, 10(1):215-234.
  4. Buchin, K., , Speckmann, B., and Verbeek, K. (2011). Flow map layout via spiral trees. IEEE Trans. on Visualization and Computer Graphics, 17(12):2536-2544.
  5. García, D. L., Vellido, A., and Nebot, A. (2007a). Finding relevant features for the churn analysis-oriented segmentation of a telecommunications market. In IEEE SICO 2007, II Simposio de Inteligencia Computacional, pages 301-310. Thomson.
  6. García, D. L., Vellido, A., and Nebot, A. (2007b). Identification of churn routes in the Brazilian telecommunications market. In ESANN'07, pages 585-590.
  7. Gastner, M. T. and Newman, M. E. J. (2004). Diffusionbased method for producing density-equalizing maps. Proceedings of the National Academy of Sciences, 101(20):7499-7504.
  8. Hadden, J., Tiwari, A., Roy, R., and Ruta, D. (2007). Computer assisted customer churn management: State-ofthe-art and future trends. Computers and Operations Research, 34(10):2902-2917.
  9. Jain, A. K. (2010). Data clustering: 50 years beyond kmeans. Pattern Recognition Letters, 31(8):651-666.
  10. Jolliffe, I. T. (2002). Principal Component Analysis. Springer Series in Statistics. Springer Verlag.
  11. Kohonen, T. (2000). Self-Organizing Maps. Information Science Series. Springer Verlag, 3rd edition.
  12. Lee, J. A. and Verleysen, M. (2007). Nonlinear Dimensionality Reduction. Information Science and Statistics. Springer Verlag.
  13. Phan, D., Xiao, L., Yeh, R., Hanrahan, P., and Winograd, T. (2005). Flow Map Layout. In InfoVis'05, pages 219-224. IEEE.
  14. Slocum, T. A. (1998). Thematic Cartography and Visualization. Prentice Hall, New Jersey, U.S.A.
  15. Tobler, W. R. (2004). Thirty-five years of computer cartograms. Annals of the Association of American Geographers, 94:58-73.
  16. Tosi, A. and Vellido, A. (2012). Cartogram representation of the batch-SOM magnification factor. In ESANN'12, pages 203-208. d-side pub.
  17. Vellido, A., García, D., and Nebot, A. (2012a). Cartogram visualization for nonlinear manifold learning models. Data Mining and Knowledge Discovery, doi: 10.1007/s10618-012-0294-6.
  18. Vellido, A., Martín, J. D., and Lisboa, P. J. G. (2012b). Making machine learning models interpretable. In ESANN'12, pages 163-172. d-side pub.
  19. Vellido, A., Martín, J. D., Rossi, F., and Lisboa, P. J. G. (2011). Seeing is believing: The importance of visualization in real-world machine learning applications. In ESANN'11, pages 219-226. d-side pub.
Download


Paper Citation


in Harvard Style

García D., Nebot À. and Vellido A. (2013). Telecommunications Customers Churn Monitoring using Flow Maps and Cartogram Visualization . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013) ISBN 978-989-8565-46-4, pages 451-460. DOI: 10.5220/0004270804510460


in Bibtex Style

@conference{ivapp13,
author={David L. García and Àngela Nebot and Alfredo Vellido},
title={Telecommunications Customers Churn Monitoring using Flow Maps and Cartogram Visualization},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013)},
year={2013},
pages={451-460},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004270804510460},
isbn={978-989-8565-46-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013)
TI - Telecommunications Customers Churn Monitoring using Flow Maps and Cartogram Visualization
SN - 978-989-8565-46-4
AU - García D.
AU - Nebot À.
AU - Vellido A.
PY - 2013
SP - 451
EP - 460
DO - 10.5220/0004270804510460