Rotationally Invariant 3D Shape Contexts using Asymmetry Patterns

Federico M. Sukno, John L. Waddington, Paul F. Whelan

2013

Abstract

This paper presents an approach to resolve the azimuth ambiguity of 3D Shape Contexts (3DSC) based on asymmetry patterns. We show that it is possible to provide rotational invariance to 3DSC at the expense of a marginal increase in computational load, outperforming previous algorithms dealing with the azimuth ambiguity. We build on a recently presented measure of approximate rotational symmetry in 2D defined as the overlapping area between a shape and rotated versions of itself to extract asymmetry patterns from a 3DSC in a variety of ways, depending on the spatial relationships that need to be highlighted or disabled. Thus, we define Asymmetry Patterns Shape Contexts (APSC) from a subset of the possible spatial relations present in the spherical grid of 3DSC; hence they can be thought of as a family of descriptors that depend on the subset that is selected. This provides great flexibility to derive different descriptors. We show that choosing the appropriate spatial patterns can considerably reduce the errors obtained with 3DSC when targeting specific types of points.

References

  1. Aynechi, N., Larson, B., Leon-Salazar, V., et al. (2011). Accuracy and precision of a 3D anthropometric facial analysis with and without landmark labeling before image acquisition. Angle Orthod, 81(2):245-252.
  2. Bariya, P., Novatnack, J., Schwartz, G., et al. (2012). 3D geometric scale variability in range images: features and descriptors. Int J Comput Vis, 99(2):232-255.
  3. Bronstein, A., Bronstein, M., Castellani, U., et al. (2010). SHREC 2010: robust correspondence benchmark. In Eurographics Workshop on 3D Object Retrieval.
  4. Chen, H. and Bhanu, B. (2007). 3D free-form object recognition in range images using local surface patches. Pattern Recogn Lett, 28(10):1252-1262.
  5. Creusot, C., Pears, N., and Austin, J. (2011). Automatic keypoint detection on 3D faces using a dictionary of local shapes. In Proc. 3DIMPVT, pages 204-211.
  6. Dagum, L. and Menon, R. (1998). OpenMP: an industry standard API for shared-memory programming. IEEE Computat Sci Eng, 5(1):46-55.
  7. Farkas, L. (1994). Anthropometry of the head and face. Raven Press (New York), 2nd ed.
  8. Frome, A., Huber, D., Kolluri, R., et al. (2004). Recognizing objects in range data using regional point descriptors. In Proc. ECCV, pages 224-237.
  9. Guo, Q., Guo, F., and Shao, J. (2010). Irregular shape symmetry analysis: Theory and application to quantitative galaxy classification. IEEE T Pattern Anal, 32(10):1730-1743.
  10. Gupta, S., Markey, M., and Bovik, A. (2010). Antopometric 3D face recognition. Int J Comput Vis, 90(3):331-349.
  11. Hennessy, R., Kinsella, A., and Waddington, J. (2002). 3D laser surface scanning and geometric morphometric analysis of craniofacial shape as an index of cerebro-craniofacial morphogenesis. Biol Psychiat, 51(6):507-514.
  12. Johnson, A. and Hebert, M. (1999). Using spin images for efficient object recognition in cluttered 3D scenes. IEEE T Pattern Anal, 21(5):433-449.
  13. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2004). Symmetry descriptors and 3D shape matching. In Eurograph. Symp. on Geometry process, pages 115-123.
  14. Kortgen, M., Park, G., Novotni, M., et al. (2003). 3D shape matching with 3D shape contexts. In Central Europ Seminar on Comput Graph.
  15. Passalis, G., Perakis, N., Theoharis, T., et al. (2011). Using facial symmetry to handle pose variations in realworld 3D face recognition. IEEE T Pattern Anal, 33(10):1938-1951.
  16. Rusu, R., Blodow, N., and Beetz, M. (2009). Fast point feature histograms (FPFH) for 3D registration. In Proc. ICRA, pages 3212-3217.
  17. Rusu, R. and Cousins, S. (2011). 3D is here: Point cloud library (PCL). In Proc. ICRA, pages 1-4, Segundo, M., Silva, L., Bellon, O. P., et al. (2010). Automatic face segmentation and facial landmark detection in range images. IEEE T Syst Man Cy B, 40(5):1319- 1330.
  18. Steder, B., Rusu, R., Konolige, K., et al. (2011). Point feature extraction on 3D range scans taking into account object boundaries. In Proc. ICRA, pages 2601-2608.
  19. Sukno, F., Waddington, J., and Whelan, P. (2012). Comparing 3D descriptors for local search of craniofacial landmarks. In Proc. ISVC, pages 92-103.
  20. Toma, A., Zhurov, A., Playle, R., et al. (2009). Reproducibility of facial soft tissue landmarks on 3D lasser-scanned facial images. Orthod Craniofac Res, 12(1):33-42.
  21. Tombari, F., Salti, S., and Stefano, L. D. (2010). Unique shape context for 3D data description. In Proc. ACM Workshop on 3D object retrieval, pages 57-62.
  22. Zaharescu, A., Boyer, E., and Horaud, R. (2012). Keypoints and local descriptors of scalar functions on 2D manifolds. Int J Comput Vision, 99(2):232-255.
  23. Zhang, Y. (2009). Intrinsic shape signatures: a shape descriptor for 3D object recognition. In Proc. ICCV Workshops, pages 689-696.
Download


Paper Citation


in Harvard Style

M. Sukno F., L. Waddington J. and F. Whelan P. (2013). Rotationally Invariant 3D Shape Contexts using Asymmetry Patterns . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013) ISBN 978-989-8565-46-4, pages 7-17. DOI: 10.5220/0004274600070017


in Bibtex Style

@conference{grapp13,
author={Federico M. Sukno and John L. Waddington and Paul F. Whelan},
title={Rotationally Invariant 3D Shape Contexts using Asymmetry Patterns},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013)},
year={2013},
pages={7-17},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004274600070017},
isbn={978-989-8565-46-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013)
TI - Rotationally Invariant 3D Shape Contexts using Asymmetry Patterns
SN - 978-989-8565-46-4
AU - M. Sukno F.
AU - L. Waddington J.
AU - F. Whelan P.
PY - 2013
SP - 7
EP - 17
DO - 10.5220/0004274600070017