Probabilistic View-based 3D Curve Skeleton Computation on the GPU

Jacek Kustra, Andrei Jalba, Alexandru Telea

2013

Abstract

Computing curve skeletons of 3D shapes is a challenging task. Recently, a high-potential technique for this task was proposed, based on integrating medial information obtained from several 2D projections of a 3D shape (Livesu et al., 2012). However effective, this technique is strongly influenced in terms of complexity by the quality of a so-called skeleton probability volume, which encodes potential 3D curve-skeleton locations. In this paper, we extend the above method to deliver a highly accurate and discriminative curve-skeleton probability volume. For this, we analyze the error sources of the original technique, and propose improvements in terms of accuracy, culling false positives, and speed. We show that our technique can deliver point-cloud curve-skeletons which are close to the desired locations, even in the absence of complex postprocessing. We demonstrate our technique on several 3D models.

References

  1. Au, O. K. C., Tai, C., Chu, H., Cohen-Or, D., and Lee, T. (2008). Skeleton extraction by mesh contraction. In Proc. ACM SIGGRAPH, pages 441-449.
  2. Bai, X., Latecki, L., and Liu, W.-Y. (2007). Skeleton pruning by contour partitioning with discrete curve evolution. IEEE TPAMI, 3(29):449-462.
  3. Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., and Su, Z. (2010a). Point cloud skeletons via laplacian-based contraction. In Proc. IEEE SMI, pages 187-197.
  4. Cao, T., Tang, K., Mohamed, A., and Tan, T. (2010b). Parallel banding algorithm to compute exact distance transform with the GPU. In Proc. SIGGRAPH I3D Symp., pages 134-141.
  5. Cornea, N., Silver, D., and Min, P. (2007). Curve-skeleton properties, applications, and algorithms. IEEE TVCG, 13(3):87-95.
  6. Cornea, N., Silver, D., Yuan, X., and Balasubramanian, R. (2005). Computing hierarchical curve-skeletons of 3D objects. Visual Comput., 21(11):945-955.
  7. Dey, T. and Sun, J. (2006). Defining and computing curve skeletons with medial geodesic functions. In Proc. SGP, pages 143-152. IEEE.
  8. Hassouna, M. and Farag, A. (2009). Variational curve skeletons using gradient vector flow. IEEE TPAMI, 31(12):2257-2274.
  9. Jalba, A., Kustra, J., and Telea, A. (2012). Computing surface and curve skeletons from large meshes on the GPU. IEEE TPAMI. accepted; see http://www.cs.rug.nl/~alext/PAPERS/PAMI12.
  10. Liu, L., Chambers, E., Letscher, D., and Ju, T. (2010). A simple and robust thinning algorithm on cell complexes. CGF, 29(7):22532260.
  11. Livesu, M., Guggeri, F., and Scateni, R. (2012). Reconstructing the curve-skeletons of 3D shapes using the visual hull. IEEE TVCG, (PrePrints). http:// doi.ieeecomputersociety.org/10.1109/TVCG.2012.71.
  12. Ma, J., Bae, S. W., and Choi, S. (2012). 3D medial axis point approximation using nearest neighbors and the normal field. Visual Comput., 28(1):7-19.
  13. Prohaska, S. and Hege, H. C. (2002). Fast visualization of plane-like structures in voxel data. In Proc. IEEE Visualization, page 2936.
  14. Reniers, D., van Wijk, J. J., and Telea, A. (2008). Computing multiscale skeletons of genus 0 objects using a global importance measure. IEEE TVCG, 14(2):355- 368.
  15. Siddiqi, K. and Pizer, S. (2009). Medial Representations: Mathematics, Algorithms and Applications. Springer.
  16. Stolpner, S., Whitesides, S., and Siddiqi, K. (2009). Sampled medial loci and boundary differential geometry. In Proc. IEEE 3DIM, pages 87-95.
  17. Strzodka, R. and Telea, A. (2004). Generalized distance transforms and skeletons in graphics hardware. In Proc. VisSym, pages 221-230.
  18. Tagliasacchi, A., Alhashim, I., Olson, M., and Zhang, H. (2012). Skeletonization by mean curvature flow. In Proc. Symp. Geom. Proc., pages 342-350.
  19. Tagliasacchi, A., Zhang, H., and Cohen-Or, D. (2009). Curve skeleton extraction from incomplete point cloud. In Proc. SIGGRAPH, pages 541-550.
  20. Telea, A. (2012a). Feature preserving smoothing of shapes using saliency skeletons. Visualization in Medicine and Life Sciences, pages 155-172.
  21. Telea, A. (2012b). GPU skeletonization code.
  22. Telea, A. and Jalba, A. (2012). Computing curve skeletons from medial surfaces of 3d shapes. In Proc. Theory and Practice of Computer Graphics (TPCG), pages 224-232. Eurographics.
  23. Telea, A. and van Wijk, J. J. (2002). An augmented fast marching method for computing skeletons and centerlines. In Proc. VisSym, pages 251-259.
Download


Paper Citation


in Harvard Style

Kustra J., Jalba A. and Telea A. (2013). Probabilistic View-based 3D Curve Skeleton Computation on the GPU . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-48-8, pages 237-246. DOI: 10.5220/0004276502370246


in Bibtex Style

@conference{visapp13,
author={Jacek Kustra and Andrei Jalba and Alexandru Telea},
title={Probabilistic View-based 3D Curve Skeleton Computation on the GPU},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={237-246},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004276502370246},
isbn={978-989-8565-48-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)
TI - Probabilistic View-based 3D Curve Skeleton Computation on the GPU
SN - 978-989-8565-48-8
AU - Kustra J.
AU - Jalba A.
AU - Telea A.
PY - 2013
SP - 237
EP - 246
DO - 10.5220/0004276502370246