Evolutionary Particle Filters: Model-free Object Tracking - Combining Evolution Strategies and Particle Filters

Silja Meyer-Nieberg, Erik Kropat, Stefan Pickl

2013

Abstract

Tracking situations or more generally state estimation of dynamic systems arise in various application contexts. Usually the state-evolution equations are assumed to be known up to certain parameters. But what can be done if this is not the case? This paper presents an innovative approach to solve this difficult and complex situation by using the inherent tracking abilities of evolution strategies. Combining principles of particle filters and evolution strategies leads to a new type of algorithms: evolutionary particle filters. Their tracking quality is examined in simulations.

References

  1. Arnold, D. V. and Beyer, H.-G. (2006). Optimum tracking with evolution strategies. Evolutionary Computation, 14:291 - 308.
  2. Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. Signal Processing, IEEE Transactions on, 50(2):174 -188.
  3. Beyer, H.-G. and Meyer-Nieberg, S. (2006). Self-adaptation of evolution strategies under noisy fitness evaluations. Genetic Programming and Evolvable Machines, 7(4):295-328.
  4. Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies: A comprehensive introduction. Natural Computing, 1(1):3-52.
  5. Beyer, H.-G. and Sendhoff, B. (2008). Covariance matrix adaptation revisited - the CMSA evolution strategy -. In Rudolph, G. et al., editors, PPSN, volume 5199 of Lecture Notes in Computer Science, pages 123-132. Springer.
  6. Doucet, A. and Johansen, A. M. (2011). A tutorial on particle filtering and smoothing: Fifteen years later. In Crisan, D. and Rozovsky, B., editors, Oxford Handbook of Nonlinear Filtering, 2011,. Oxford University Press.
  7. Hansen, N. (2006). The CMA evolution strategy: A comparing review. In Lozano, J. et al., editors, Towards a new evolutionary computation. Advances in estimation of distribution algorithms, pages 75-102. Springer.
  8. Johansson, A. and Lehmann, E. (2009). Evolutionary optimization of dynamics models in sequential monte carlo target tracking. Evolutionary Computation, IEEE Transactions on, 13(4):879 -894.
  9. Meyer-Nieberg, S. and Beyer, H.-G. (2007). Self-adaptation in evolutionary algorithms. In Lobo, F., Lima, C., and Michalewicz, Z., editors, Parameter Setting in Evolutionary Algorithms, pages 47-76. Springer Verlag, Heidelberg.
  10. Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. Wiley, Chichester.
  11. Uosaki, K. and Hatanaka, T. (2005). Evolution strategies based gaussian sum particle filter for nonlinear state estimation. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 3, pages 2365 - 2371.
Download


Paper Citation


in Harvard Style

Meyer-Nieberg S., Kropat E. and Pickl S. (2013). Evolutionary Particle Filters: Model-free Object Tracking - Combining Evolution Strategies and Particle Filters . In Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-8565-40-2, pages 96-102. DOI: 10.5220/0004284300960102


in Bibtex Style

@conference{icores13,
author={Silja Meyer-Nieberg and Erik Kropat and Stefan Pickl},
title={Evolutionary Particle Filters: Model-free Object Tracking - Combining Evolution Strategies and Particle Filters},
booktitle={Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2013},
pages={96-102},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004284300960102},
isbn={978-989-8565-40-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Evolutionary Particle Filters: Model-free Object Tracking - Combining Evolution Strategies and Particle Filters
SN - 978-989-8565-40-2
AU - Meyer-Nieberg S.
AU - Kropat E.
AU - Pickl S.
PY - 2013
SP - 96
EP - 102
DO - 10.5220/0004284300960102