Hill Climbing versus Genetic Algorithm Optimization in Solving the Examination Timetabling Problem

Siti Khatijah Nor Abdul Rahim, Andrzej Bargiela, Rong Qu

2013

Abstract

In this paper, we compare the incorporation of Hill Climbing (HC) and Genetic Algorithm (GA) optimization in our proposed methodology in solving the examination scheduling problem. It is shown that our greedy HC optimization outperforms the GA in all cases when tested on the benchmark datasets. In our implementation, HC consumes more time to execute compared to GA which manages to improve the quality of the initial schedules in a very fast and efficient time. Despite this, since the amount of time taken by HC in producing improved schedules is considered reasonable and it never fails to produce better results, it is suggested that we incorporate the Hill Climbing optimization rather than GA in our work.

References

  1. A. J. Abramson D. 1992. A parallel genetic algorithm for solving the school timetabling problem.
  2. Asmuni H., E. K. Burke, J. M. Garibaldi, and Barry McCollum. 2005. Fuzzy Multiple Heuristic Orderings for Examination Timetabling. In E. K. Burke and M. Trick, editors, Practice and Theory of Automated Timetabling V (PATAT 2004, Pittsburg USA, August 2004, Selected Revised Papers), volume 3616 of Lecture Notes in Computer Science, pages 334-353, Berlin, 2005.Springer.
  3. Asmuni H, E. K. Burke, J. M. Garibaldi, B. McCollum and A. J. Parkes. 2009. An investigation of fuzzy multiple heuristic orderings in the construction of university examination timetables. Comput. Oper. Res.,vol. 36, pp. 981-1001, 2009.
  4. Bargiela, A. Pedrycz, W., 2008. Toward a theory of Granular Computing for human-centred information processing. IEEE Trans. on Fuzzy Systems, vol. 16, 2, 2008, 320-330, doi:10.1109/TFUZZ.2007.905912.
  5. Bykov Y., Burke E. K. 2008. A late acceptance strategy in hill-climbing for exam timetabling problems. PATAT 2008 Conference. Montreal, Canada.
  6. Bykov Y., E. Ozcan, M. Birben. 2009. Examination timetabling using late acceptance hyper-heuristics. IEEE Congress on Evolutionary Computation.
  7. Burke E. K., Elliman D. G., and Weare R. F. 1994a. A Genetic Algorithm for University Timetabling. AISB Workshop on Evolutionary Computing, University of Leeds, UK.
  8. Burke E. K., Elliman D. G., and Weare R. F. 1994b. A Genetic Algorithm Based University Timetabling System. AISB Workshop on Evolutionary Computing, University of Leeds, UK.
  9. Burke E. K., Bykov Y., Newall J. and Petrovic S. 2004. A Time-Predefined Local Search Approach to Exam Timetabling Problems. IIE Transactions on Operations Engineering, 36(6) 509-528.
  10. Burke E. K., Pham N, Yellen J. 2010c. Linear Combinations of Heuristics for Examination Timetabling. Annals of Operations Research DOI 10.1007/s10479-011-0854-y.
  11. Carter M. and Laporte G. 1995. Recent developments in practical examination timetabling. Lecture Notes in Comput. Sci., vol 1153, pp.1-21, 1996 [Practice and Theory of Automated Timetabling I, 1995].
  12. Carter M., Laporte G. and Lee S. 1996. Examination Timetabling: Algorithmic Strategies and Applications. Journal of Operations Research Society, 47 373-383.
  13. Dowsland K. A. and Thompson J. 2005. Ant colony optimization for the examination scheduling problem. Journal of Operational Research Society, 56: 426-438.
  14. Gueret,. Narendra Jussien, Patrice Boizumault, Christian Prins. 1995. Building University Timetables Using Constraint Logic Programming. First International Conference on the Practice and Theory of Automated Timetabling, PATAT' 95, pp. 393-408, Edinburgh.
  15. Gyori S., Z. Petres, and A. Varkonyi-Koczy. Genetic Algorithms in Timetabling. A New Approach. 2001. Budapest University of Technology and Economics, Department of Measurement and Information Systems.
  16. Qu. R, Burke E. K., B. McCollum, L. T. G. Merlot, and S. Y. Lee. 2009. A Survey of Search Methodologies and Automated System Development for Examination Timetabling. Journal of Scheduling, 12(1): 55-89, 2009. doi: 10.1007/s10951-008-0077-5.
  17. Rahim, S. K. N. A., Bargiela, A., & Qu, R. 2009. Granular Modelling Of Exam To Slot Allocation. ECMS 2009 Proceedings edited by J. Otamendi, A. Bargiela, J. L. Montes, L. M. Doncel Pedrera (pp. 861-866). European Council for Modeling and Simulation. doi:10.7148/2009-0861-0866.
  18. Rahim, S. K. N. A., Bargiela, A., & Qu, R. 2012. Domain Transformation Approach to Deterministic Optimization of Examination Timetables. Accepted for publication in Artificial Intelligence Research (AIR) Journal. Sciedu Press.
  19. Ross P., Hart E. and Corne D. 1998. Some observations about GA-based exam timetabling. In: E.K. Burke and M.W. Carter (eds) (1998). Practice and Theory of Automated Timetabling: Selected Papers from the 2nd International Conference. Springer Lecture Notes in Computer Science, vol. 1408. 115-129.
  20. Taufiq Abdul Gani, Ahamad Tajudin Khader and Rahmat Budiarto. 2004. Optimizing Examination Timetabling using a Hybrid Evolution Strategies. IN: Proceedings of the Second International Conference on Autonomous Robots and Agents (ICARA 2004), 13- 15 December 2004, Palmerston North, New Zealand, pp. 345-349.
  21. Ulker O., Ozcan E. and E. E. Korkmaz. 2007. Linear linkage encoding in grouping problems: applications on graph coloring and timetabling. In: E.K. Burke and H. Rudova (eds) (2007) Practice and Theory of Automated Timetabling: Selected Papers from the 6th International Conference. Springer Lecture Notes in Computer Science, vol. 3867, 347-363.
Download


Paper Citation


in Harvard Style

Rahim S., Bargiela A. and Qu R. (2013). Hill Climbing versus Genetic Algorithm Optimization in Solving the Examination Timetabling Problem . In Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-8565-40-2, pages 43-52. DOI: 10.5220/0004286600430052


in Bibtex Style

@conference{icores13,
author={Siti Khatijah Nor Abdul Rahim and Andrzej Bargiela and Rong Qu},
title={Hill Climbing versus Genetic Algorithm Optimization in Solving the Examination Timetabling Problem},
booktitle={Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2013},
pages={43-52},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004286600430052},
isbn={978-989-8565-40-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Hill Climbing versus Genetic Algorithm Optimization in Solving the Examination Timetabling Problem
SN - 978-989-8565-40-2
AU - Rahim S.
AU - Bargiela A.
AU - Qu R.
PY - 2013
SP - 43
EP - 52
DO - 10.5220/0004286600430052