3D Invariants from Coded Projection without Explicit Correspondences

Kenta Suzuki, Fumihiko Sakaue, Jun Sato

2013

Abstract

In this paper, we propose a method for computing stable 3D features for 3D object recognition. The feature is projective invariant computed from 3D information which is based on disparity of two projectors. In our method, the disparity can be estimated just from image intensity without obtaining any explicit corresponding points. Thus, we do not need any image matching method in order to obtain corresponding points. This means that we can avoid any kind of problems arise from image matching essentially. Therefore, we can compute 3D invariant features from the 3D information reliably. The experimental results show our proposed invariant feature is useful for 3D object recognition.

References

  1. Boyer, K. L. and Kak, A. C. (1987). Color-encoded structured light for rapid active ranging. IEEE Trans. Pattern Anal. Mach. Intell., 9(1):14-28.
  2. Caspi, D., Kiryati, N., and Shamir, J. (1998). Range imaging with adaptive color structured light. IEEE Trans. Pattern Anal. Mach. Intell., 20(5):470-480.
  3. Hartley, R. and Zisserman, A. (2000). Multiple View Geometry in Computer Vision. Cambridge University Press.
  4. Hetzel, G., Leibe, B., Levi, P., and Schiele, B. (2001). 3d object recognition from range images using local feature histograms. In CVPR (2)7801, pages 394-399.
  5. Lowe, D. G. (1999). Object recognition from local scaleinvariant features. In Proc. of the International Conference on Computer Vision, Corfu.
  6. Murase, H. and Nayar, S. K. (1995). Visual learning and recognition of 3-d objects from appearance. International Journal of Computer Vision, 14:5-24.
  7. Proesmans, M., Van Gool, L., and Oosterlinck, A. (1996). One-shot active 3d shape acquisition. In Proceedings of the International Conference on Pattern Recognition (ICPR 7896) Volume III-Volume 7276 - Volume 7276, ICPR 7896, pages 336-, Washington, DC, USA. IEEE Computer Society.
  8. Sakaue, F. and Sato, J. (2011). Surface depth computation and representation from multiple coded projector light. In Proc. IEEE International Workshop on Projector-Camera Systems (PROCAMS2011), pages 75-80.
  9. Toshev, A., Makadia, A., and Daniilidis, K. (2009). Shapebased object recognition in videos using 3d synthetic object models. In CVPR, pages 288-295.
  10. Vuylsteke, P. and Oosterlinck, A. (1990). Range image acquisition with a single binary-encoded light pattern. IEEE Trans. Pattern Anal. Mach. Intell., 12(2):148- 164.
  11. Zhang, L., Curless, B., and Seitz, S. M. (2002). Rapid shape acquisition using color structured light and multi-pass dynamic programming. In The 1st IEEE International Symposium on 3D Data Processing, Visualization, and Transmission, pages 24-36.
Download


Paper Citation


in Harvard Style

Suzuki K., Sakaue F. and Sato J. (2013). 3D Invariants from Coded Projection without Explicit Correspondences . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-48-8, pages 286-293. DOI: 10.5220/0004289802860293


in Bibtex Style

@conference{visapp13,
author={Kenta Suzuki and Fumihiko Sakaue and Jun Sato},
title={3D Invariants from Coded Projection without Explicit Correspondences},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={286-293},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004289802860293},
isbn={978-989-8565-48-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)
TI - 3D Invariants from Coded Projection without Explicit Correspondences
SN - 978-989-8565-48-8
AU - Suzuki K.
AU - Sakaue F.
AU - Sato J.
PY - 2013
SP - 286
EP - 293
DO - 10.5220/0004289802860293