Stable Keypoint Recognition using Viewpoint Generative Learning
Takumi Yoshida, Hideo Saito, Masayoshi Shimizu, Akinori Taguchi
2013
Abstract
We propose a stable keypoint recognition method that is robust to viewpoint changes. Conventional local features such as SIFT, SURF, etc., have scale and rotation invariance but often fail in matching points when the camera pose significantly changes. In order to solve this problem, we adopt viewpoint generative learning. By generating various patterns as seen from different viewpoints and collecting local invariant features, our system can learn feature descriptors under various camera poses for each keypoint before actual matching. Experimental results comparing usual local feature matching or patch classification method show both robustness and fastness of learning.
References
- Agrawal, M., Konolige, K., and Blas, M. R. (2008). Censure: Center surround extremas for realtime feature detection and matching. ECCV, 5305:102-115.
- Arthur, D. and Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027-1035.
- Baumberg, A. (2000). Reliable feature matching across widely separated views. CVPR, pages 774-781.
- Bay, H., Tuytelaars, T., Gool, V., and L. (2006). Surf: Speeded up robust features. ECCV, 3951:404-417.
- Bellavia, F., Tegolo, D., and Trucco, E. (2010). Improving sift-based descriptors stability to rotations. ICPR, pages 3460-3463.
- Brown, M. and Lowe, D. (2002). Invariant features from interest point groups. BMVC, pages 656-665.
- Gauglitz, S., Hollerer, T., and Turk, M. (2011). Evaluation of interest point detectors and feature descriptors for visual tracking. IJCV, 94:335-360.
- Lepetit, V. and Fua, P. (2006). Keypoint recognition using randomized trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(9):1465-1479.
- Lieberknecht, S., Benhimane, S., Meier, P., and Navab, N. (2009). A dataset and evaluation methodology for template-based tracking algorithms. ISMAR, pages 145-151.
- Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. IJCV, 60:91-110.
- Mikolajczyk, K. and Schmid, C. (2004). Scale & affine invariant interest point detectors. IJCV, 60:63-86.
- Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:1615- 1630.
- Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., and Van Gool, L. (2005). A comparison of affine region detectors. IJCV, 65:43-72.
- Morel, J. M. and Yu, G. (2009). Asift: A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2(2):438-469.
- Ozuysal, M., Calonder, M., Lepetit, V., and Fua, P. (2009). Fast keypoint recognition using random ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3):448-461.
- Takacs, G., Chandrasekhar, V., Chen, H., Chen, D., Tsai, S., Grzeszczuk, R., and Girod, B. (2010). Permutable descriptors for orientation-invariant image matching. SPIE.
Paper Citation
in Harvard Style
Yoshida T., Saito H., Shimizu M. and Taguchi A. (2013). Stable Keypoint Recognition using Viewpoint Generative Learning . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-48-8, pages 310-315. DOI: 10.5220/0004295203100315
in Bibtex Style
@conference{visapp13,
author={Takumi Yoshida and Hideo Saito and Masayoshi Shimizu and Akinori Taguchi},
title={Stable Keypoint Recognition using Viewpoint Generative Learning},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={310-315},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004295203100315},
isbn={978-989-8565-48-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)
TI - Stable Keypoint Recognition using Viewpoint Generative Learning
SN - 978-989-8565-48-8
AU - Yoshida T.
AU - Saito H.
AU - Shimizu M.
AU - Taguchi A.
PY - 2013
SP - 310
EP - 315
DO - 10.5220/0004295203100315