Evaluation Methodology for Descriptors in Neuroimaging Studies

M. Luna, F. Gayá, C. Cáceres, José M. Tormos, E. J. Gómez

2013

Abstract

Automatic identification and location of brain structures is one of the main stages to process neuroimaging studies. The proposed approach consists of identifying landmarks over an image. These landmarks must have values of location and intensity variation to obtain a direct relation between detected landmarks and brain structures. Descriptors are algorithms whose function is to select and store points featuring these two types of information. There are many algorithms used to obtain descriptors. Therefore, it is necessary to select the most adequate to the type of images and context of application. It is advisable to design and develop an evaluation methodology to objectively identify appropriate algorithms. This paper proposes a new evaluation methodology for descriptors used on neuroimaging studies.

References

  1. Bay H. et al. SURF: Speeded Up Robust Features. Computer vision and Image understanding, vol. 110, nº 3, pp. 346-359, 2008
  2. Gossow G. et al. An evaluation of open source SURF implementations. RoboCup 2010, pp. 169-179, 2011.
  3. Izard C et al. Automatic landmarking of magnetic resonance brain images. Medical Imaging 2005: Image Processing, vol. 5747, n. 1, pp. 1329-1340, 2005.
  4. Lowe D. Object recognition from local scale-invariant features. Proceedings of the International Conference on Computer Vision, nº2, pp. 1150-1157, 1999 Lui M. L. et al. Automatic Landmark Tracking and its Application to the Optimization of Brain Conformal Mapping. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1784 - 1792, 2006.
  5. Luna M. et al. Automatic brain anatomical landmark detection. Proc. Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, ISBN 9789460185496, 2012.
  6. Mikolajczk K. et al. A performance evaluation of local descriptors. IEEE Trans. on Pattern Analysis and machine intelligence, 27, nº 10, pp. 1615-1630, 2005 Shattuck D. W et al. Semi-automated method for delineation of landmarks on models of the cerebral cortex. J. of Neuroscience Methods, vol. 178, pp. 385- 392, 2009.
  7. Verard L et al. Fully automatic identification of AC and PC landmarks on brain MRI using scene analysis. IEEE Trans. on medical imaging, vol. 16, n. 5, 1997.
Download


Paper Citation


in Harvard Style

Luna M., Gayá F., Cáceres C., Tormos J. and Gómez E. (2013). Evaluation Methodology for Descriptors in Neuroimaging Studies . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-48-8, pages 114-117. DOI: 10.5220/0004298001140117


in Bibtex Style

@conference{visapp13,
author={M. Luna and F. Gayá and C. Cáceres and José M. Tormos and E. J. Gómez},
title={Evaluation Methodology for Descriptors in Neuroimaging Studies },
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={114-117},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004298001140117},
isbn={978-989-8565-48-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)
TI - Evaluation Methodology for Descriptors in Neuroimaging Studies
SN - 978-989-8565-48-8
AU - Luna M.
AU - Gayá F.
AU - Cáceres C.
AU - Tormos J.
AU - Gómez E.
PY - 2013
SP - 114
EP - 117
DO - 10.5220/0004298001140117