An Active Contour Model with Improved Shape Priors using Fourier Descriptors

Fareed Ahmed, Huu Dien Khue Le, Julien Olivier, Romuald Boné

2013

Abstract

Snakes or active contours are widely used for image segmentation. There are many different implementations of snakes. No matter which implementation is being employed, the segmentation results suffer greatly in presence of occlusions, noise, concavities or abnormal modification of shape. If some prior knowledge about the shape of the object is available, then its addition to an existing model can greatly improve the segmentation results. In this work inclusion of such shape constraints for explicit active contours is presented. These shape priors are introduced through the use of Fourier based descriptors which makes them invariant to the translation, scaling and rotation factors and enables the deformable model to converge towards the prior shape even in the presence of occlusion and context noise. These shape constraints have been computed in descriptor space so no reconstruction is required. Experimental results clearly indicate that the inclusion of these shape priors greatly improved the segmentation results in comparison with the original snake model.

References

  1. Bartolini, I., Ciaccia, P., and Patella, M. (2005). Warp: Accurate retrieval of shapes using phase of fourier descriptors and time warping distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(1):142-147.
  2. Caselles, V., Kimmel, R., and Sapiro, G. (1995). Geodesic active contours. International Journal of Computer Vision, 22(1):61-79.
  3. Charmi, M. A., Derrode, S., and Ghorbel, F. (2008). Fourier-based geometric shape prior for snakes. Pattern Recognition Letters, 29(7):897-904.
  4. Charpiat, G., Faugeras, O. D., and Keriven, R. (2007). Shape statistics for image segmentation with prior. In CVPR.
  5. Cohen, L. D. and Cohen, I. (1991). Finite element methods for active contour models and balloons for 2d and 3d images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:1131-1147.
  6. Cremers, D., Tischhäuser, F., Weickert, J., and Schnörr, C. (2002). Diffusion snakes: Introducing statistical shape knowledge into the mumford-shah functional. International Journal of Computer Vision, 50(3):295-313.
  7. Fabbri, R., Costa, L. D. F., Torelli, J. C., and Bruno, O. M. (2008). 2d euclidean distance transform algorithms: A comparative survey. ACM Computing Surveys, 40(1):2:1-2:44.
  8. Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active Contour Models. International Journal of Computer Vision, 1(4):321-331.
  9. Mille, J., Boné, R., Makris, P., and Cardot, H. (2006). Greedy algorithm and physics-based method for active contours and surfaces: A comparative study. In ICIP, pages 1645-1648. IEEE.
  10. Pratt, W. K., Faugeras, O. D., , and Gagalowicz, A. (1978). Visual discrimination of stochastic texture fields. IEEE Transactions on Systems, Man, and Cybernetics, 8(11):796-804.
  11. Staib, L. H. and Duncan, J. S. (1992). Boundary finding with parametrically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(11):1061-1075.
  12. Williams, D. J. and Shah, M. (1992). A Fast algorithm for active contours and curvature estimation. CVGIP: Image Understanding, 55(1):14-26.
  13. Xu, C. and Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3):359-369.
  14. Xue, Z., Li, S. Z., and Teoh, E. K. (2002). Aieigensnake: an affine-invariant deformable contour model for object matching. Image and Vision Computing, 20(2):77-84.
Download


Paper Citation


in Harvard Style

Ahmed F., Le H., Olivier J. and Boné R. (2013). An Active Contour Model with Improved Shape Priors using Fourier Descriptors . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-47-1, pages 472-476. DOI: 10.5220/0004299504720476


in Bibtex Style

@conference{visapp13,
author={Fareed Ahmed and Huu Dien Khue Le and Julien Olivier and Romuald Boné},
title={An Active Contour Model with Improved Shape Priors using Fourier Descriptors},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={472-476},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004299504720476},
isbn={978-989-8565-47-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)
TI - An Active Contour Model with Improved Shape Priors using Fourier Descriptors
SN - 978-989-8565-47-1
AU - Ahmed F.
AU - Le H.
AU - Olivier J.
AU - Boné R.
PY - 2013
SP - 472
EP - 476
DO - 10.5220/0004299504720476