Incorporating Proofs in a Categorical Attributed Graph Transformation System for Software Modelling and Verification

Bertrand Boisvert, Louis Féraud, Sergei Soloviev

2013

Abstract

This paper deals with model transformations based on attributed graphs transformation. Our approach is based on the categorical approach called Single Pushout. The principal goal being to strengthen the attribute computation part, we generalize our earlier approach based on the use of typed lambda-terms with inductive types and recursion to represent attributes and computation functions. The generalized approach takes terms in variable context as attributes and partial proofs as computation functions that permit to combine computation with proof development and verification. The intended domains of application are the development of cerified software models and semantics models for interactive proof development and verification.

References

  1. Baar, T., Strohmeier, A., Moreira, A. M. D., and Mellor, S. J., editors (2004). UML 2004 - The Unified Modelling Language: Modelling Languages and Applications. 7th International Conference, Lisbon, Portugal, October 11-15, 2004. Proceedings, volume 3273 of LNCS. Springer.
  2. Barendregt, H., van Eekelen, M., Glauert, J., Kennaway, J., Plasmeijer, M., and Sleep, M. (1997). Term graph rewriting. PARLE Parallel Architectures and Languages Europe, pages 141-158.
  3. Bézivin, J., Rumpe, B., Schürr, A., and Tratt, L. (2005). Model transformations in practice workshop. In MoDELS Satellite Events, pages 120-127.
  4. Boisvert, B., Féraud, L., and Soloviev, S. (2011a). Typed lambda-terms in categorical attributed graph rewriting. In 2nd WorKshop on Algebraic Methods in Model-Based Software Engineering TOOLS 2011, June 30th, 2011, Zurich, Switzerland . Electronic Proceedings in Theoretical Computer Science.
  5. Boisvert, B., Féraud, L., and Soloviev, S. (2011b). Typed lambda-terms in categorical graph rewriting. In The International Conference Polynomial Computer Algebra, April 18-22, Saint-Petersburg, Russia, Euler International Mathematical Institute.
  6. Boisvert, B., Féraud, L., and Soloviev, S. (2012). Graph Transformations, Proofs, and Grammars. In Int. Conf. Phylosophy, Mathematics, Linguistics, Aspects of Interaction, May 22-25, Saint-Petersburg, Russia, Euler International Mathematical Institute.
  7. Breazu-Tannen, V., Coquand, T., Gunter, C., and Scedrov, A. (1991). Inheritance and implicit coercion. Information and Computation, 93:172-221.
  8. Bundy, A. (1988). The use of explicit plans to guide inductive proofs. In Luck, E. and Overbeek, R., editors, Proceedings of the 9th International Conference on Automated Deduction (CADE), number 310 in LNCS, pages 111-120. Springer, Argonne.
  9. Chemouil, D. (2005). Isomorphisms of simple inductive types through extensional rewriting. Math. Structures in Computer Science, 15(5):875-917.
  10. Combemale, B., Thirioux, X., and Baudry, B. (2012). Formally Defining and Iterating Infinite Models. In France, R., Kazmeier, J., Atkinson, C., and Breu, R., editors, Proceedings of the 15th international conference on Model driven engineering languages and systems (MODELS'12), volume 7590 of LNCS, pages 119-133, Innsbruck, Austria. Springer.
  11. Diestel, R. (2010). Graph Theory. Springer-Verlag, fourth edition.
  12. Ehrig, H. (1978). Introduction to the algebraic theory of graph grammars (a survey). In Graph-Grammars and Their Application to Computer Science and Biology, pages 1-69.
  13. Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006a). Fundamentals of Algebraic Graph Transformation (Monographs in Theoretical Computer Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
  14. Ehrig, H., Padberg, J., Prange, U., and Habel, A. (2006b). Adhesive high-level replacement systems: A new categorical framework for graph transformation. Fundam. Inf., 74(1):1-29.
  15. Gentzen, G. (1934-35). Untersuchungen über das logische Schliessen. In I, II, Math. Z. 39, pages 176-210, 405- 443.
  16. Kleene, S. C. (1952). Permutability of inferences in Gentzen's calculi LK and LJ. Mem. Amer. Math. Soc., pages 1-26.
  17. L öwe, M., editor (1993). Algebraic approach to single pushout graph transformation, TCS, volume 109.
  18. Luo, Z. (1994). Computation and Reasoning: A Type Theory for Computer Science. International Series of Monographs on Computer Science. Oxford University Press, USA.
  19. Luo, Z. (2008). Coercions in a polymorphic type system. Math. Structures in Computer Science, 18(4):729- 751.
  20. Orejas, F. (2011). Symbolic graphs for attributed graph constraints. J. Symb. Comput., 46:294-315.
  21. Rebout, M. (2008). Une approche catégorique unifiée pour la récriture de graphes attribués. PhD thesis, Université Paul Sabatier, Toulouse, France.
  22. Rebout, M., Féraud, L., Marie-Magdeleine, L., and Soloviev, S. (2011). Computations in Graph Rewriting: Inductive types and Pullbacks in DPO Approach. In Szmuc, T., Szpyrka, M., and Zendulka, J., editors, Advances in Software Engineering Techniques, CEESET 2009, Krakow, Poland, October 2009, volume 7054 of LNCS, pages 150-163. Springer-Verlag.
  23. Rebout, M., Féraud, L., and Soloviev, S. (2008). A Unified Categorical Approach for Attributed Graph Rewriting. In Hirsch, E. and Razborov, A., editors, International Computer Science Symposium in Russia (CSR 2008), Moscou 07/06/2008-12/06/2008, volume 5010 of LNCS, pages 398-410. Springer-Verlag.
  24. Rozenberg, G., editor (1997). Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations. World Scientific.
  25. Soloviev, S. and Luo, Z. (2001). Coercion completion and conservativity in coercive subtyping. Annals of Pure and Applied Logic, 113-1:297-322.
  26. Taentzer, G., Ehrig, K., Guerra, E., Lara, J. D., Levendovszky, T., Prange, U., Varro, D., and et al. (2005). Model transformations by graph transformations: A comparative study. In Model Transformations in Practice Workshop at Models 2005, MONTEGO, page 5.
  27. Tran, H. N., Percebois, C., Abou Dib, A., Féraud, L., and Soloviev, S. (2010). Attribute Computations in the DPoPb Graph Transformation Engine (regular paper). In GRABATS 2010, University of Twente, Enschede, The Netherlands, 28/09/2010-28/09/2010, page (electronic medium), http://www.utwente.nl/en. University of Twente.
Download


Paper Citation


in Harvard Style

Boisvert B., Féraud L. and Soloviev S. (2013). Incorporating Proofs in a Categorical Attributed Graph Transformation System for Software Modelling and Verification . In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD, ISBN 978-989-8565-42-6, pages 62-74. DOI: 10.5220/0004321200620074


in Bibtex Style

@conference{modelsward13,
author={Bertrand Boisvert and Louis Féraud and Sergei Soloviev},
title={Incorporating Proofs in a Categorical Attributed Graph Transformation System for Software Modelling and Verification},
booktitle={Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,},
year={2013},
pages={62-74},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004321200620074},
isbn={978-989-8565-42-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,
TI - Incorporating Proofs in a Categorical Attributed Graph Transformation System for Software Modelling and Verification
SN - 978-989-8565-42-6
AU - Boisvert B.
AU - Féraud L.
AU - Soloviev S.
PY - 2013
SP - 62
EP - 74
DO - 10.5220/0004321200620074