Structural Analysis of Nuclear Magnetic Resonance Spectroscopy Data

Alejandro Chinea, José L. González Mora

2013

Abstract

From the clinical diagnosis point of view in vivo nuclear magnetic resonance (NMR) spectroscopy has proven to be a valuable tool for performing non-invasive quantitative assessments of brain tumour glucose metabolism. Brain tumours are considered fast-growth tumours because of their high rate of proliferation. Therefore, there is strong interest from the clinical investigator’s point of view in the development of early tumour detection techniques. Unfortunately, current diagnosis techniques ignore the dynamic aspects of these signals. It is largely believed that temporal variations of NMR spectra are simply due to noise or do not carry enough information to be exploited by any reliable diagnosis procedure. Thus, current diagnosis procedures are mainly based on empirical observations extracted from single averaged spectra. In this paper, a machine learning framework for the analysis of NMR spectroscopy signals is introduced. The proposed framework is characterized by a set of structural parameters that are shown to be very sensitive to metabolic changes as those exhibited by tumour cells. Furthermore, they are able to cope not only with high-dimensional characteristics of NMR data but also with the dynamic aspects of these signals.

References

  1. Aydin K., Ucok A., Cakir S. (2007), Quantitative Proton MR Spectroscopy Findings in the Corpus Callosum of Patients with Schizophrenia Suggest Callosal Disconnection, AJNR American Journal of Radiology, 28, 1968-1974.
  2. Basso K., M A. A., Stolovitzky G., et al. (2005), Reverse engineering of regulatory networks in human B cells, Nature Genetics, 37, 382-390.
  3. Bishop C. M. (1995). Neural Networks for Pattern Recognition, Oxford University Press, Oxford.
  4. Bishop C. M., (2006). Pattern Recognition and Machine Learning, Springer Science+Business Media, LLC.
  5. Blayo F., Cheneval Y., Guérin-Dugué A., et al. (1995), Enhanced Learning for Evolutive Neural Architecture, ESPRIT Basic Research Project Number 6891, Deliverable R3-B4-P, Task B4 (Benchmarks), pp. 11- 22.
  6. Bruschweiler R., Zhang F. (2004), Covariance nuclear magnetic resonance spectroscopy, Journal of Chemical Physics 120, 5253-5261.
  7. Cherkassy V., Mulier F. M. (2007), Learning from Data: Concepts, Theory and Methods 2nd Edition, Wiley, New Jersey, pp.92-127.
  8. Chinea A. (2011), Nonlinear Dynamical Analysis of Magnetic Resonance Spectroscopy Data, Lecture Notes in Computer Science 6636, 469-482.
  9. Cloarec O., Dumas M. E., Craig A., et al. (2005), Statistical Total Correlation Spectroscopy: An Exploratory Approach for Latent Biomarker Identification from Metabolic 1H NMR Data Sets, Analytical Chemistry 77, 1282-1289.
  10. Ebbels T. M. D., Cavill R., Bioinformatic methods in NMR-based metabolic profiling (2009), Progress in Nuclear Magnetic Resonance Spectroscopy 55, 361- 374.
  11. Frahm J., Hanioke W., Merboldt K. D., Transverse coherence in rapid FLASH NMR imaging , Journal of Magnetic Resonance 72 (1987) 307-314.
  12. Friedman N. (2004), Inferring Cellular Networks Using Probabilistic Graphical Models, Science, 303, 799- 805.
  13. Frye M. A., Watzl J., Banakar S., et al. (2007), Increased Anterior Cingulate/Medial Prefrontal Cortical Glutamate and Creatine in Bipolar Depression, Neuropsychopharmacology 32, 2490-2499.
  14. Fukunaga K. (1990), Statistical Pattern Recognition, 2nd Edition, Academic Press, San Francisco.
  15. Haykin S. (1999), Neural Networks: A Comprehensive Foundation, Prentice Hall, New Jersey.
  16. Jansen J. F. A., Backes W. H., Nicolay K., et al. (2006), H MR Spectroscopy of the Brain: Absolute Quantification of Metabolites, Radiology 240, 318- 332.
  17. Keun H. C, Athersuch T. J., Beckonert O., et al. (2008), Heteronuclear 19F-1H Statistical Total Correlation Spectroscopy as a Tool in Drug Metabolism: Study of Flucloxacillin Biotransformation, Analytical Chemistry 80, 1073-1079.
  18. Kolen J. F., Kremer S. C. (Eds.) (2001). A Field Guide to Dynamical Recurrent Networks. IEEE Press, Piscataway, New Jersey.
  19. Kwock L., Smith J. K., Castillo M., et al. (2006), Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer, Lancet Oncology 7, 859-868.
  20. Lisboa P. J. G., Vellido A., Tagliaferri R., Napolitano F., et al. (2010), Data Mining in Cancer Research, IEEE Computational Intelligence Magazine, vol. 5, 1 (2010) 14-18.
  21. Nelson S. J., Brown T.R. (1987), A method for automatic quantification of one-dimensional spectra with low signal-to-noise ratio, Journal of Magnetic Resonance 75, 229-243.
  22. Raamsdonk L. M., Teusink B., Broadhurst D., et al. (2001), A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations, Nature Biotechnology 19(1), 45-50.
  23. Sadja P. (2006), Machine learning for detection and diagnosis of disease, Annual Review of Biomedical Engineering 8, 537-565.
  24. Schölkopf B., Burges C. J. C., Smola A.J. (Eds.), Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, MA (1999), pp. 327-352.
  25. Sigmundsson T., Maier M., Toone B. K. (2003), Frontal lobe N-acetylaspartate correlates with psychopathology in schizophrenia: a proton magnetic resonance spectroscopy study, Schizophrenia Research 64, 63-71.
  26. Summerfield C., Gómez-Ansón B., Tolosa E., et al. (2002) Dementia in Parkinson disease: a proton magnetic resonance spectroscopy study, Archives of Neurology 59, 1415-1420.
  27. Vanhamme L., Sundin T., Hecke P. V., et al. (2001), MR spectroscopy quantitation: a review of time-domain methods, NMR in Biomedicine 14, 233-246.
Download


Paper Citation


in Harvard Style

Chinea A. and L. González Mora J. (2013). Structural Analysis of Nuclear Magnetic Resonance Spectroscopy Data . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013) ISBN 978-989-8565-35-8, pages 212-222. DOI: 10.5220/0004321902120222


in Bibtex Style

@conference{bioinformatics13,
author={Alejandro Chinea and José L. González Mora},
title={Structural Analysis of Nuclear Magnetic Resonance Spectroscopy Data},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)},
year={2013},
pages={212-222},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004321902120222},
isbn={978-989-8565-35-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)
TI - Structural Analysis of Nuclear Magnetic Resonance Spectroscopy Data
SN - 978-989-8565-35-8
AU - Chinea A.
AU - L. González Mora J.
PY - 2013
SP - 212
EP - 222
DO - 10.5220/0004321902120222