A Top-down Approach to Combining Logics
Christoph Benzmüller
2013
Abstract
The mechanization and automation of combination of logics, expressive ontologies and notions of context are prominent current challenge problems. I propose to approach these challenge topics from the perspective of classical higher-order logic. From this perspective these topics are closely related and a common, uniform solution appears in reach.
References
- Akman, V. and Surav, M. (1996). Steps toward formalizing context. AI Magazine, 17(3).
- Andrews, P. B. (1971). Resolution in Type Theory. Journal of Symbolic Logic, 36(3):414-432.
- Andrews, P. B. (1972). General models and extensionality. Journal of Symbolic Logic, 37:395-397.
- Andrews, P. B. (2002). An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Kluwer Academic Publishers, second edition.
- Baldoni, M. (1998). Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension. PhD thesis, Universita degli studi di Torino.
- Benzmüller, C. (1999). Extensional higher-order paramodulation and RUE-resolution. Automated Deduction, CADE-16, Proc., number 1632 in LNCS, pages 399- 413. Springer.
- Benzmüller, C. (2002). Comparing approaches to resolution based higher-order theorem proving. Synthese, 133(1- 2):203-235.
- Benzmüller, C. (2009). Automating access control logic in simple type theory with LEO-II. Emerging Challenges for Security, Privacy and Trust, SEC 2009, Proc., volume 297 of IFIP, pages 387-398. Springer.
- Benzmüller, C. (2011). Combining and automating classical and non-classical logics in classical higher-order logic. Annals of Mathematics and Artificial Intelligence, 62(1-2):103-128.
- Benzmüller, C., Brown, C., and Kohlhase, M. (2004). Higher-order semantics and extensionality. Journal of Symbolic Logic, 69(4):1027-1088.
- Benzmüller, C., Gabbay, D., Genovese, V., and Rispoli, D. (2012). Embedding and automating conditional logics in classical higher-order logic. Annals of Mathematics and Artificial Intelligence. In Print. DOI 10.1007/s10472-012-9320-z.
- Benzmüller, C. and Genovese, V. (2011). Quantified conditional logics are fragments of HOL. Presented at the Int. Conference on Non-classical Modal and Predicate Logics (NCMPL). Available as arXiv:1204.5920v1.
- Benzmüller, C. and Paulson, L. (2008). Exploring Properties of Normal Multimodal Logics in Simple Type Theory with LEO-II. Festschrift in Honor of Peter B. Andrews on His 70th Birthday. College Publications.
- Benzmüller, C. and Paulson, L. C. (2010). Multimodal and intuitionistic logics in simple type theory. The Logic Journal of the IGPL, 18:881-892.
- Benzmüller, C. and Paulson, L. C. (2012). Quantified multimodal logics in simple type theory. Logica Universalis. In Print. DOI 10.1007/s11787-012-0052-y.
- Benzmüller, C. and Pease, A. (2012). Higher-order aspects and context in SUMO. Journal of Web Semantics, 12- 13:104-117.
- Benzmüller, C., Rabe, F., and Sutcliffe, G. (2008). The core TPTP language for classical higher-order logic. Automated Reasoning, IJCAR 2008, Proc., volume 5195 of LNCS, pages 491-506. Springer.
- Brown, C. (2007). Automated Reasoning in HigherOrder Logic: Set Comprehension and Extensionality in Church's Type Theory. College Publications.
- Buvac, S., Buvac, V., and Mason, I. A. (1995). Metamathematics of contexts. Fundamenta Informaticae, 23(3):263-301.
- Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56-68.
- Giunchiglia, F. (1993). Contextual reasoning. Epistemologia (Special Issue on Languages and Machines), 16:345-364.
- Giunchiglia, F. and Serafini, L. (1994). Multilanguage hierarchical logics or: How we can do without modal logics. Artificial Intelligence, 65(1):29-70.
- Guha, R. V. (1991). Context: A Formalization and Some Applications. PhD thesis, Stanford University.
- Henkin, L. (1950). Completeness in the theory of types. Journal of Symbolic Logic, 15:81-91.
- Hoder, K. and Voronkov, A. (2011). Sine qua non for large theory reasoning. Automated Deduction, CADE-23, Proc., volume 6803 of LNCS, pages 299-314.
- Huet, G. (1973). A Complete Mechanization of Type Theory. In Proc. of the 3rd International Joint Conference on Artificial Intelligence , pages 139-146.
- Huet, G. (1975). A Unification Algorithm for Typed Lambda-Calculus. Theoretical Computer Science, 1(1):27-57.
- Lehmann, J., Varzinczak, I. J., and (eds.), A. B. (2012). Reasoning with context in the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web, 12-13:1-160.
- McCarthy, J. (1987). Generality in artificial intelligence. Communications of the ACM, 30(12):1030-1035.
- McCarthy, J. (1993). Notes on formalizing context. In Proc. of IJCAI'93, pages 555-562.
- Meng, J. and Paulson, L. C. (2009). Lightweight relevance filtering for machine-generated resolution problems. Journal of Applied Logic, 7(1):41-57.
- de Paiva, V. (2003). Natural deduction and context as (constructive) modality. In Modeling and Using Context, Proc. of CONTEXT 2003, volume 260 of LNCS, Stanford, CA, USA. Springer.
- Ohlbach, H.-J. (1991). Semantics Based Translation Methods for Modal Logics. Journal of Logic and Computation, 1(5):691-746.
- Pease, A., editor (2011). Ontology: A Practical Guide. Articulate Software Press, Angwin, CA 94508.
- Pease, A., Sutcliffe, G., Siegel, N., and Trac, S. (2010). Large theory reasoning with SUMO at CASC. AI Communications, 23(2-3):137-144.
- Pietrzykowski, T. and Jensen, D. (1972). A Complete Mechanization of Omega-order Type Theory. Proc. of the ACM Annual Conf., pages 82-92. ACM Press.
- Ramachandran, D., Reagan, P., and Goolsbey, K. (2005). First-orderized ResearchCyc: Expressivity and efficiency in a common-sense ontology. In P., S., editor, Papers from the AAAI Workshop on Contexts and Ontologies: Theory, Practice and Applications, Pittsburgh, Pennsylvania, USA, 2005. Technical Report WS-05-01, AAAI Press, Menlo Park, California.
- Segerberg, K. (1973). Two-dimensional modal logic. Journal of Philosophical Logic, 2(1):77-96.
- Serafini, L. and Bouquet, P. (2004). Comparing formal theories of context in AI. Artif. Intell., 155:41-67.
- Stalnaker, R. (1968). A theory of conditionals. Studies in Logical Theory, American Philosophical Quarterly, Monogr. Series no.2, page 98-112. Blackwell, Oxford.
- Sutcliffe, G. (2007). TPTP, TSTP, CASC, etc. Proc. of the 2nd International Computer Science Symposium in Russia, number 4649 in LNCS, pages 7-23. Springer.
- Sutcliffe, G. (2009). The TPTP problem library and associated infrastructure. Journal of Automated Reasoning, 43(4):337-362.
- Sutcliffe, G. and Benzmüller, C. (2010). Automated reasoning in higher-order logic using the TPTP THF infrastructure. Journal of Formalized Reasoning, 3(1):1-27.
- Thomason, R. H. (1984). Combinations of tense and modality. Handbook of Philosophical Logic, Vol. 2: Extensions of Classical Logic, pages 135-165. D. Reidel.
- Woods, J. and Gabbay, D. M., editors (since 2004). Handbook of the History of Logic, volumes 1-8. Elsevier.
Paper Citation
in Harvard Style
Benzmüller C. (2013). A Top-down Approach to Combining Logics . In Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-8565-39-6, pages 346-351. DOI: 10.5220/0004324803460351
in Bibtex Style
@conference{icaart13,
author={Christoph Benzmüller},
title={A Top-down Approach to Combining Logics},
booktitle={Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2013},
pages={346-351},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004324803460351},
isbn={978-989-8565-39-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - A Top-down Approach to Combining Logics
SN - 978-989-8565-39-6
AU - Benzmüller C.
PY - 2013
SP - 346
EP - 351
DO - 10.5220/0004324803460351